...
首页> 外文期刊>Advances in space research >Robust and precise baseline determination of distributed spacecraft in LEO
【24h】

Robust and precise baseline determination of distributed spacecraft in LEO

机译:LEO中分布式航天器的稳健而精确的基线确定

获取原文
获取原文并翻译 | 示例

摘要

Recent experience with prominent formation flying missions in Low Earth Orbit (LEO), such as GRACE and TanDEM-X, has shown the feasibility of precise relative navigation at millimeter and sub-millimeter levels using GPS carrier phase measurements with fixed integer ambiguities. However, the robustness and availability of the solutions provided by current algorithms may be highly dependent on the mission profile. The main challenges faced in the LEO scenario are the resulting short continuous carrier phase tracking arcs along with the observed rapidly changing ionospheric conditions, which in the particular situation of long baselines increase the difficulty of correct integer ambiguity resolution. To reduce the impact of these factors, the present study proposes a strategy based on a reduced-dynamics filtering of dual-frequency GPS measurements for precise baseline determination along with a dedicated scheme for integer ambiguity resolution, consisting of a hybrid sequential/batch algorithm based on the maximum a posteriori and integer aperture estimators. The algorithms have been tested using flight data from the GRACE, TanDEM-X and Swarm missions in order to assess their robustness to different formation and baseline configurations. Results with the GRACE mission show an average 0.7 mm consistency with the K/Ka-band ranging measurements over a period of more than two years in a baseline configuration of 220 km. Results with TanDEM-X data show an average of 3.8 mm consistency of kinematic and reduced-dynamic solutions in the along-track component over a period of 40 days in baseline configurations of 500 m and 75 km. Data from Swarm A and Swarm C spacecraft are largely affected by atmospheric scintillation and contain half cycle ambiguities. The results obtained under such conditions show an overall consistency between kinematic and reduced-dynamic solutions of 1.7 cm in the along-track component over a period of 30 days in a variable baseline of approximately 60-175 km. An analysis of one orbital period excluding a region where errors due to atmospheric scintillation occur, shows a consistency between kinematic and reduced-dynamic solutions of 3 mm in the along-track direction.
机译:最近在GRACE和TanDEM-X等低地球轨道(LEO)进行的重要编队飞行任务的最新经验表明,使用具有固定整数模糊度的GPS载波相位测量,可以在毫米和亚毫米级别进行精确相对导航。但是,当前算法提供的解决方案的健壮性和可用性可能高度取决于任务配置文件。 LEO方案面临的主要挑战是产生的短连续载波相位跟踪电弧以及观察到的快速变化的电离层条件,这在长基线的特定情况下增加了正确的整数模糊度解析的难度。为了减少这些因素的影响,本研究提出了一种基于对双频GPS测量值进行降动态滤波以进行精确基线确定的策略,以及一种专用的整数模糊度解决方案,该策略包括一个基于混合顺序/批处理算法的最大后验和整数孔径估计量。已经使用GRACE,TanDEM-X和Swarm任务的飞行数据对算法进行了测试,以评估算法对不同编队和基线构型的稳健性。 GRACE任务的结果显示,在220 km的基线配置下,超过两年的时间与K / Ka波段测距的平均一致性为0.7 mm。 TanDEM-X数据的结果显示,在500 m和75 km的基线配置下,在40天的时间内,沿轨道组件的运动和降动力解决方案的平均3.8 mm一致性。来自群A和群C航天器的数据在很大程度上受到大气闪烁的影响,并且包含半周期模糊度。在这样的条件下获得的结果表明,在大约60-175 km的可变基线中,在30天的时间内,沿轨迹分量的运动解决方案和降动力解决方案之间的总体一致性为1.7 cm。对一个轨道周期的分析(不包括由于大气闪烁引起的误差的区域)表明,沿轨道方向的3 mm运动学解和降动力解之间是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号