首页> 外文期刊>Advances in space research >Gaussian-process-regression-based periodical variation analysis of the lunar surface temperature with the ESA-Dresden radio telescope
【24h】

Gaussian-process-regression-based periodical variation analysis of the lunar surface temperature with the ESA-Dresden radio telescope

机译:高斯 - 流程回归的基于esa-dresden射频望远镜的月球表面温度的周期变化分析

获取原文
获取原文并翻译 | 示例
           

摘要

Preparation for the extreme range of lunar surface temperature is essential for the success of robot and human exploration on the Moon. Much research on this topic has been carried out over recent years. Generally, these approaches can be divided into three types based on: the observation data, the theoretical model, and the in situ measurements. This paper presents a new Bayesian algorithm to measure the lunar surface temperature and analyze its periodical variation with respect to the Moon phases based on the observation data, which have been taken from the ESA-Dresden 10 GHz radio telescope. As the signal-to-noise ratio of the observation data is very low, and can easily be affected by ambient factors, continuous observations are made when the Moon moves across the main beam of the antenna. These continuous observations are then modeled with Gaussian distribution to improve observation accuracy. Due to the lunar surface temperature varying during the lunations, the Gaussian Process regression, which is coupled with the periodical covariance function, is proposed to analyze the periodical variation of the lunar surface temperature. Both the mean and variance of the temperature can be calculated at any Moon phase. Experiments are conducted on the observation data collected from November 2018 to March 2019 in Strasbourg, France with the ESA-Dresden 10 GHz radio telescope. The results show that the lunar surface temperature is an approximate sinusoidal function of the Moon phase, with the average temperature of about 196 K. The lunar surface temperature reaches the peak 4.80-6.25 days after the full Moon and falls to the bottom 3.67-6.50 days after the new moon.
机译:为月球成功和人类勘探对月球成功的极端气温的准备是必不可少的。近年来,对这一主题进行了很多研究。通常,这些方法可以基于以下方式分为三种类型:观察数据,理论模型和原位测量。本文提出了一种新的贝叶斯算法来测量月球表面温度,并根据观察数据分析其相对于月亮阶段的周期变化,从ESA-DRESDON 10 GHz Radio望远镜中获取。随着观察数据的信噪比非常低,并且可以容易受环境因素的影响,当月亮在天线的主束上移动时,使连续观察结果。然后使用高斯分布模拟这些连续观察以提高观察精度。由于月期的月球表面温度变化,提出了与周期性协方差函数耦合的高斯过程回归,以分析月球表面温度的周期性变化。可以在任何月亮阶段计算温度的平均值和方差。实验是在从2018年11月到2019年3月在法国斯特拉斯堡的观察数据上进行的,与ESA-DRESDON 10 GHz Radio望远镜在2019年。结果表明,月球表面温度是月亮相的近似正弦功能,平均温度约为196 k。月球表面温度达到满月后4.80-6.25天的峰值,落到底部3.67-6.50新月后的几天。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号