首页> 外文期刊>Advances in civil engineering >Numerical Simulation and Microscopic Stress Mechanism for the Microscopic Pore Deformation during Soil Compression
【24h】

Numerical Simulation and Microscopic Stress Mechanism for the Microscopic Pore Deformation during Soil Compression

机译:土壤压缩过程中细孔变形的数值模拟和微观应力机理

获取原文
获取原文并翻译 | 示例
           

摘要

Pore structure is closely related with strength, constitutive relation, consolidation characteristics, and permeability properties of soil. Consequently, improving the understanding of the relationship between microscopic structure and macroscopic physical and mechanical properties has extremely important scientific significance. A large number of studies have shown that pores of soil have fractal features, and hence, the carpet model can be used to approximately simulate the fractal structure of clay. In the present study, ANSYS software was selected to establish a microscopic model of clay to study the distribution of microscopic stress and microscopic deformation characteristics of pores under different consolidation pressures. Besides, the variation law of microscopic pore size was quantitatively determined by using IPP (Image-Pro Plus) software. Combined with the fractal theory, the changes of microscopic pore of numerical simulation and that of physical experiment during compression of clay are studied. All the results indicated that the microscopic stress distribution of clay is not uniform on the compaction process. The larger the pore size is, the bigger the compression stress on both sides and the greater the bending deformation of upper part of the pore is, which leads to the deformation of larger pores which is bigger than that of smaller pores. Based on the results, issues about the microscopic mechanism of the difference in vertical and horizontal permeability under compression of clay, the relationship between the changes of pore shape and microscopic stress, the preliminary principle of preferential crush of larger particles for granular soil, skeleton stress across the region where stiffness is relative larger, and the self-protection of particles and pores are also discussed. The results of this study are of great importance in understanding of soil compression and related physical and mechanical properties from the microscopic view.
机译:孔隙结构与土壤的强度,本构关系,固结特性和渗透性密切相关。因此,增进对微观结构与宏观物理力学性能之间关系的理解具有极其重要的科学意义。大量研究表明,土壤孔隙具有分形特征,因此,地毯模型可用于近似模拟粘土的分形结构。在本研究中,选择ANSYS软件建立粘土的微观模型,以研究在不同固结压力下孔隙的微观应力分布和微观变形特征。此外,使用IPP(Image-Pro Plus)软件定量确定了微观孔径的变化规律。结合分形理论,研究了黏土压缩过程中数值模拟和物理实验微观孔隙的变化。所有结果表明,粘土的微观应力分布在压实过程中并不均匀。孔尺寸越大,两侧的压缩应力越大,孔上部的弯曲变形越大,这导致较大孔的变形大于较小孔的变形。根据研究结果,探讨了粘土在压缩状态下纵横向渗透率差异的微观机理,孔隙形状变化与微观应力之间的关系,粒状土优先破碎大颗粒的初步原理,骨架应力等问题。还讨论了刚度相对较大的区域,以及颗粒和孔的自我保护。这项研究的结果对于从微观角度理解土壤压缩以及相关的物理和机械性能具有重要意义。

著录项

  • 来源
    《Advances in civil engineering》 |2019年第3期|1542797.1-1542797.14|共14页
  • 作者单位

    Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Hubei, Peoples R China;

    Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Hubei, Peoples R China;

    Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Hubei, Peoples R China;

    Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Hubei, Peoples R China;

    Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Hubei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号