...
首页> 外文期刊>Advanced Optical Materials >An All-Dielectric Metasurface Building Block for the Kerker Effect between Excitons and Nanocavities: Germanium Nanogroove
【24h】

An All-Dielectric Metasurface Building Block for the Kerker Effect between Excitons and Nanocavities: Germanium Nanogroove

机译:激子和纳米腔之间的刻蚀效应的全介电超表面构件:锗纳米槽

获取原文
获取原文并翻译 | 示例
           

摘要

Coupling between light and matter has many infusive physical effects andrnpotential applications. Large Rabi splitting energy is achieved in manyrnplasmonic nanostructures; however, these noble metallic materials generallyrnsuffer from a high level of Joule heating losses at optical frequencies.rnAs an alternative strategy, all-dielectric materials for manipulating light atrnthe subwavelength scale have attracted enormous interest. However, thernunderstanding of the interactions between all-dielectric nanostructures andrnmolecular excitons remains limited to date. Here, the use of a germaniumrnnanogroove as a new all-dielectric metasurface building block is demonstratedrnfor the Kerker effect between molecular excitons and nanocavities. Arndistinct dip in the backward scattering spectra is observed, indicating relativelyrnstrong light–matter interaction due to the cavity magnetic resonancernmode in the grooves. Germanium with a large real part and nonnegligiblernimaginary part of the refractive index in the visible region provides magneticrnfield enhancement similar to that of other all-dielectric nanostructures; thisrnphenomenon is theoretically explained by simulating the magnetic field distributionrnin the grooves. These findings may help researchers to better understandrnthe interactions between all-dielectric nanostructures and molecularrnexcitons and indicate that germanium nanogrooves can potentially be usedrnas metasurface building blocks in nanophotonic devices.
机译:光与物质之间的耦合具有许多有害的物理效应和潜在的应用。在许多等离子体纳米结构中实现了大的拉比分裂能。然而,这些贵金属材料通常在光频率下承受高的焦耳热损耗。作为一种替代策略,用于在亚波长范围内操纵光的全介电材料引起了极大的兴趣。然而,迄今为止,对全介电纳米结构和分子激子之间相互作用的理解仍然很有限。在这里,已经证明了使用锗纳米槽作为新的全介电超表面构件,以用于分子激子和纳米腔之间的克尔效应。观察到向后散射光谱中存在Arndistinct倾角,这表明由于凹槽中的腔磁共振模式,光-物质相互作用相对较强。锗在可见光区域的折射率具有大的实部和虚构的不可忽略的部分,与其他全电介质纳米结构相似,提供的磁场增强;理论上通过模拟凹槽中的磁场分布来解释这种现象。这些发现可能有助于研究人员更好地理解全介电纳米结构与分子激子之间的相互作用,并表明锗纳米槽可潜在地用作纳米光子器件中的超表面构件。

著录项

  • 来源
    《Advanced Optical Materials》 |2018年第4期|1701176.1-1701176.11|共11页
  • 作者单位

    State Key Laboratory of Optoelectronic Materials and Technologies Nanotechnology Research Center School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275, Guangdong, P. R. China;

    State Key Laboratory of Optoelectronic Materials and Technologies Nanotechnology Research Center School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275, Guangdong, P. R. China;

    State Key Laboratory of Optoelectronic Materials and Technologies Nanotechnology Research Center School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275, Guangdong, P. R. China;

    State Key Laboratory of Optoelectronic Materials and Technologies Nanotechnology Research Center School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275, Guangdong, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cavity magnetic resonance mode; germanium nanogroove; Kerker effect; light–matter interactions; molecular excitons;

    机译:腔磁共振模式锗纳米槽刻痕效应;光与物质的相互作用;分子激子;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号