...
首页> 外文期刊>Advanced Materials >Powering Electronic Devices from Salt Gradients in AA-Battery-Sized Stacks of Hydrogel-Infused Paper
【24h】

Powering Electronic Devices from Salt Gradients in AA-Battery-Sized Stacks of Hydrogel-Infused Paper

机译:从AA电池叠层叠层中的盐梯度供电电子设备,水凝胶填充纸

获取原文
获取原文并翻译 | 示例
           

摘要

Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel-infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel-inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.
机译:强电鱼类在其身体内使用离子梯度产生令人惊叹的外部电气放电;这些有机体中最强大的大西洋鱼雷射线,可以从电动器官中产生超过1千瓦的脉冲。尽管对这种现象进行了广泛的研究,但基于离子梯度的人工发电方案的开发仍然遥不可及。以前,由电鳗的灵感的人造电器官证明,从堆叠的水凝胶内的离子梯度产生的电力可能超过100V。然而,该电源的电流太低而无法功率标准电子器件。这里,引入了由TARPEDO射线的独特形态引发的人造电机,用于最大电流输出。该电源使用水凝胶注入纸的混合材料,以在串联和并行地制造,组织和重新配置薄,任意大型凝胶膜的堆叠。与原始EEL启发的设计相比,通过几乎两个数量级增加了电力的增加使得能够为电子设备提供电力,并建立生物学的产生显着电力的机制,现在可以从便携式尺寸的良性和软材料实现了显着的电力。

著录项

  • 来源
    《Advanced Materials》 |2021年第31期|2101757.1-2101757.9|共9页
  • 作者单位

    Univ Fribourg Adolphe Merkle Inst Chemin Verdiers 4 CH-1700 Fribourg Switzerland;

    Univ Fribourg Adolphe Merkle Inst Chemin Verdiers 4 CH-1700 Fribourg Switzerland;

    Harvard Univ John A Paulson Sch Engn & Appl Sci 29 Oxford St Cambridge MA 02138 USA;

    Univ Fribourg Adolphe Merkle Inst Chemin Verdiers 4 CH-1700 Fribourg Switzerland;

    Univ Fribourg Adolphe Merkle Inst Chemin Verdiers 4 CH-1700 Fribourg Switzerland;

    Univ Fribourg Adolphe Merkle Inst Chemin Verdiers 4 CH-1700 Fribourg Switzerland;

    Univ Fribourg Adolphe Merkle Inst Chemin Verdiers 4 CH-1700 Fribourg Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bioinspired materials; energy storage; hydrogels; paper;

    机译:Bioinspired材料;储能;水凝胶;纸张;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号