首页> 外文期刊>Advanced Materials >Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices
【24h】

Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices

机译:应变型诱导的高性能微纤维有机生物电子器件的各向异性微晶取向和最大化的载流子

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, mu C* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large mu C* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering. The resultant strain-engineered microfibers exhibit very high carrier mobility (12.9 cm(2) V-1 s(-1)) without the trade-off in volumetric capacitance (122 F cm(-3)) and hole density (5.8 x 10(20) cm(-3)). Such advantageous electrical and electrochemical characteristics offer the benchmark parameter of mu C* over approximate to 1500 F cm(-1) V-1 s(-1), which is the highest metric ever reported in the literature and can be beneficial for realizing a new class of substrate-free fibrillar and/or textile bioelectronics in the configuration of electrochemical transistors and/or electrochemical ion pumps.
机译:尽管载流动性的重要性,但最近的研究努力主要集中在容积电容的提高,以最大限度地提高MU C *(载体移动性和容积电容的产品),适用于高性能有机电化学晶体管。这里,使用高度有序的结晶聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)微纤维,具有前所未有的大MU C *的高性能微纤维基有机电化学晶体管。通过单轴张力的应变工程与干燥凝血纤维过程中的溶剂介导的结晶组合使用,导致沿纤维方向的结晶型材的永久优先对准,通过原子力显微镜验证并透过 - X射线散射。所得菌株的微纤维具有非常高的载流子迁移率(12.9cm(2)V-1 s(-1)),而不在体积电容(122 f cm(-3))和孔密度(5.8 x 10 (20)cm(-3))。这种有利的电化学和电化学特性提供了MU C *的基准参数,超过1500 f cm(-1)V-1 s(-1),这是文献中有史以来的最高度量,并且可以有利于实现a在电化学晶体管和/或电化学离子泵的构造中,新类别的无基质纤维结和/或纺织生物电体电池。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号