...
首页> 外文期刊>Advanced Materials >Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts
【24h】

Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts

机译:基于半导体光催化剂的原子级电荷分离策略

获取原文
获取原文并翻译 | 示例
           

摘要

Semiconductor-based photocatalysis as a productive technology furnishes a prospective solution to environmental and renewable energy issues, but its efficiency greatly relies on the effective bulk and surface separation of photoexcited charge carriers. Exploitation of atomic-level strategies allows in-depth understanding on the related mechanisms and enables bottom-up precise design of photocatalysts, significantly enhancing photocatalytic activity. Herein, the advances on atomic-level charge separation strategies toward developing robust photocatalysts are highlighted, elucidating the fundamentals of charge separation and transfer processes and advanced probing techniques. The atomic-level bulk charge separation strategies, embodied by regulation of charge movement pathway and migration dynamic, boil down to shortening the charge diffusion distance to the atomic-scale, establishing atomic-level charge transfer channels, and enhancing the charge separation driving force. Meanwhile, regulating the in-plane surface structure and spatial surface structure are summarized as atomic-level surface charge separation strategies. Moreover, collaborative strategies for simultaneous manipulation of bulk and surface photocharges are also introduced. Finally, the existing challenges and future prospects for fabrication of state-of-the-art photocatalysts are discussed on the basis of a thorough comprehension of atomic-level charge separation strategies.
机译:基于半导体的光电催化作为生产技术为环境和可再生能源问题提供了一项潜在的解决方案,但其效率极大地依赖于运动屏蔽电荷载体的有效体积和表面分离。对原子级策略的开发允许对相关机制深入了解,并实现了光催化剂的自下而上的精确设计,显着增强了光催化活性。在此,突出了关于发展稳健光催化剂的原子水平电荷分离策略的进步,阐明了电荷分离和转移过程的基本原则和先进的探测技术。原子水平散装电荷分离策略,通过调节电荷运动途径和迁移动态,沸腾以缩短到原子尺度的电荷扩散距离,建立原子级电荷传输通道,增强电荷分离驱动力。同时,规范面内表面结构和空间表面结构总结为原子水平表面电荷分离策略。此外,还介绍了同时操纵散装和表面光的协作策略。最后,在原子级电荷分离策略的全面理解的基础上,讨论了制造最先进的光催化剂的现有挑战和未来前景。

著录项

  • 来源
    《Advanced Materials》 |2021年第10期|2005256.1-2005256.34|共34页
  • 作者单位

    China Univ Geosci Sch Mat Sci & Technol Natl Lab Mineral Mat Beijing Key Lab Mat Utilizat Nonmetall Minerals & Beijing 100083 Peoples R China;

    Univ Newcastle UON Sch Environm & Life Sci Discipline Chem Callaghan NSW 2308 Australia;

    Chinese Acad Sci Key Lab Photochem Convers & Optoelect Mat Tech Inst Phys & Chem Beijing 100190 Peoples R China;

    China Univ Geosci Sch Mat Sci & Technol Natl Lab Mineral Mat Beijing Key Lab Mat Utilizat Nonmetall Minerals & Beijing 100083 Peoples R China;

    China Univ Geosci Sch Mat Sci & Technol Natl Lab Mineral Mat Beijing Key Lab Mat Utilizat Nonmetall Minerals & Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atomic-level strategies; bulk charge separation; charge kinetics; photocatalysis; surface charge separation;

    机译:原子级策略;批量电荷分离;电荷动力学;光催化;表面电荷分离;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号