...
首页> 外文期刊>Advanced Materials >Engineering Co_2MnAl_xSi_(1-x)Heusler Compounds as a Model System to Correlate Spin Polarization, Intrinsic Gilbert Damping, and Ultrafast Demagnetization
【24h】

Engineering Co_2MnAl_xSi_(1-x)Heusler Compounds as a Model System to Correlate Spin Polarization, Intrinsic Gilbert Damping, and Ultrafast Demagnetization

机译:Engineering Co_2mnal_xsi_(1-x)Heusler化合物作为一种型号系统,用于关联自旋极化,内在吉尔伯特阻尼和超快退缩化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract Engineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping, responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond timescale. Here, engineered Co2MnAlxSi1‐x Heusler compounds are used to adjust the degree of spin polarization at the Fermi energy, P, from 60% to 100% and to investigate how they correlate with the damping. It is experimentally demonstrated that the damping decreases when increasing the spin polarization from 1.1 × 10−3 for Co2MnAl with 63% spin polarization to an ultralow value of 4.6 × 10−4 for the half‐metallic ferromagnet Co2MnSi. This allows the investigation of the relation between these two parameters and the ultrafast demagnetization time characterizing the loss of magnetization occurring after femtosecond laser pulse excitation. The demagnetization time is observed to be inversely proportional to 1 – P and, as a consequence, to the magnetic damping, which can be attributed to the similarity of the spin angular momentum dissipation processes responsible for these two effects. Altogether, the high‐quality Heusler compounds allow control over the band structure and therefore the channel for spin angular momentum dissipation.
机译:摘要磁性材料的开发工程更好的旋转式应用依赖于两个关键参数的控制:自旋极化和吉尔伯特阻尼,负责自旋角动量耗散。预期它们都会影响超速磁化动态,在飞秒秒尺度上发生。这里,工程化CO2MALXSI1-X Heusler化合物用于调节Fermi Energy,P的自旋极化程度,从60%到100%,并研究它们如何与阻尼相关。实验证明,当增加1.1×10-3的旋转偏振时,阻尼减少了22mL的旋转偏振,对于半金属铁磁体CO2MNSI为4.6%的旋转偏振,为4.6×10-4的超低值。这允许研究这两个参数与超快退缩时间之间的关系,其特征在于在飞秒激光脉冲激发后发生的磁化丧失。观察到退磁时间与1-p成反比,并且因此,对于磁阻,这可以归因于旋转角动量耗散过程的相似性,其负责这两种效果。完全,高质量的Heusler化合物允许控制带结构,从而控制旋转角动量耗散的通道。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号