...
首页> 外文期刊>Advanced Materials >A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells
【24h】

A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells

机译:用于实现高性能串联聚合物太阳能电池的坚固互连层

获取原文
获取原文并翻译 | 示例

摘要

Recently, polymer solar cells (PSCs) have attracted much atten tion primarily due to their potential for fabricating low-cost and large-area flexible solar cells.[1-3] Smart chemistry can design conjugated polymeric structures for PSCs with enhanced open circuit voltage (Voc) and short-circuit current density (Jsc). This has resulted in significant efficiency enhancements in recent years. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, which limits the utilization of the full solar spectrum.[4,5] A possible solution is to stack multiple photo active layers wherein the photoactive layers have complemen tary absorption. Recently, multiple-junction tandem PSCs with various configuration have been demonstrated, in which two polymerfullerene bulk heterojunctions (BHJs) are connected in series or parallel to fulfill this goal.[6-8] These configurations enable reduction of potential loss during photon-to-electron conversion process, and add-up of electrical potential or photo current of the individual BHJs, while the combination of poly mers with complimentary bandgaps broadens absorption band ranging 300 nm up to 900 nm, covering a larger portion of the solar spectrum. Recently, a 7.7% PCE from small organic molecule-based tandem solar cells has been achieved.[9] it strongly indicats that tandem structure is one of the promising approaches to break though 10% theoretical limit for single junction-based polymer solar cells.[10]
机译:近年来,聚合物太阳能电池(PSC)备受关注,主要是因为它们具有制造低成本和大面积柔性太阳能电池的潜力。[1-3]智能化学技术可以为PSC设计共轭聚合物结构,从而提高开路电压(Voc)和短路电流密度(Jsc)。近年来,这大大提高了效率。然而,当今设计的大多数材料始终具有固有的缺点,即吸收范围不广,这限制了整个太阳光谱的利用。[4,5]可能的解决方案是堆叠多个光敏层,其中光敏层层具有互补吸收。最近,已经证明了具有各种构型的多结串联PSC,其中两个聚合物富勒烯本体异质结(BHJ)串联或并联连接以实现此目标。[6-8]这些构型可以减少光子到光子期间的潜在损耗。 -电子转换过程,以及各个BHJ的电势或光电流的累加,而聚合物与互补带隙的组合将吸收范围扩大到300 nm至900 nm,覆盖了太阳光谱的较大部分。最近,基于有机小分子的串联太阳能电池获得了7.7%的PCE。[9]它强烈表明,串联结构是突破单结型聚合物太阳能电池理论极限的10%的有前途的方法之一。[10]

著录项

  • 来源
    《Advanced Materials 》 |2011年第30期| p.3465-3470| 共6页
  • 作者单位

    Department of Materials Science and Engineering University of California Los Angeles Los Angeles, CA 90095, USA;

    Department of Materials Science and Engineering University of California Los Angeles Los Angeles, CA 90095, USA;

    Department of Materials Science and Engineering University of California Los Angeles Los Angeles, CA 90095, USA;

    Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing, 100190, P. R. China;

    Department of Materials Science and Engineering University of California Los Angeles Los Angeles, CA 90095, USA;

    Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing, 100190, P. R. China;

    Department of Materials Science and Engineering University of California Los Angeles Los Angeles, CA 90095, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号