...
首页> 外文期刊>Advanced Materials >Classification of Lattice Defects in the Kesterite Cu_2ZnSnS_4 and Cu_2ZnSnSe_4 Earth-Abundant Solar Cell Absorbers
【24h】

Classification of Lattice Defects in the Kesterite Cu_2ZnSnS_4 and Cu_2ZnSnSe_4 Earth-Abundant Solar Cell Absorbers

机译:Kesterite Cu_2ZnSnS_4和Cu_2ZnSnSe_4地球丰富的太阳能电池吸收剂中晶格缺陷的分类

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The kesterite-structured semiconductors Cu_2ZnSnS_4 and Cu_2ZnSnSe_4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chal-copyrite materials CuGaSe_2 and CulnSe_2. Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor Cu_(Zn) antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2Cu_(zn)+Sn_(Zn)], [V_(Cu)+Zn_(Cu)] and [Zn_(Sn)+2Zn_(Cu)] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2Cu_(Zn)+Sn_(Zn)] clusters, especially in Cu_2ZnSnS_4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) = 0.8 and Zn/Sn = 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu_2ZnSn(S,Se)_4 cells when the S composition is high.
机译:作为富含地球的低成本薄膜太阳能电池中的活性层,近年来,由硅藻土结构的半导体Cu_2ZnSnS_4和Cu_2ZnSnSe_4引起了极大的关注。相对于二元和三元半导体,这些四元化合物中元素的数量增加,导致材料特性的灵活性增加。相反,还可以形成多种固有的晶格缺陷,这些缺陷对其光学和电学性质以及由此产生的光伏性能具有重要影响。由于不良的样品质量,目前对这些缺陷的实验鉴定受到限制。在此,基于新的系统计算方法,综述了有关钾钛矿材料中缺陷形成和离子化的最新理论研究,并与研究更好的黄铜矿-黄铜矿材料CuGaSe_2和CulnSe_2进行了比较。揭示并突出了四个特征:(i)钾长石和共存的次级化合物之间的强相竞争; (ii)由大量受体Cu_(Zn)反位点和Cu空位决定的本征p型电导率,以及它们对Cu /(Zn + Sn)和Zn / Sn比的依赖性; (iii)诸如[2Cu_(zn)+ Sn_(Zn)],[V_(Cu)+ Zn_(Cu)]和[Zn_(Sn)+ 2Zn_(Cu)]等电荷补偿缺陷簇的作用及其对非化学计量的贡献; (iv)大量[2Cu_(Zn)+ Sn_(Zn)]团簇的电子俘获效应,特别是在Cu_2ZnSnS_4中。计算的特性解释了实验观察结果,即在贫铜和富锌条件下(Cu /(Zn + Sn)= 0.8和Zn / Sn = 1.2)导致最高的太阳能电池效率,并暗示了Cu_2ZnSn(S S组成较高时,(Se)_4个单元。

著录项

  • 来源
    《Advanced Materials》 |2013年第11期|1522-1539|共18页
  • 作者单位

    Key Laboratory of Polar Materials and Devices (MOE) East China Normal University Shanghai 200241, China,Key Laboratory for Computational Physical Sciences (MOE)Surface Physics Laboratory Fudan University Shanghai 200433, China;

    Center for Sustainable Chemical Technologies Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY, UK;

    Key Laboratory for Computational Physical Sciences (MOE)Surface Physics Laboratory Fudan University Shanghai 200433, China;

    National Renewable Energy Laboratory Golden, CO 80401, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号