首页> 外文期刊>Advanced Materials >Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd~(3+)Sensitized Nanoparticles
【24h】

Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd~(3+)Sensitized Nanoparticles

机译:Nd〜(3+)敏化纳米粒子800nm激发上转换发光的过渡层消除光子猝灭,从而制得猝灭屏蔽三明治结构。

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, near-infrared (NIR)-to-visible upconversion nano-particles (UCNPs) have been becoming a new class of pow-erful tools in biological and medical applications, such as cellular labeling, in vivo imaging, fluorescence resonance energy transfer (FRET)-based biosensors, drug delivery, and photody-namic therapy, due to their unique upconversion (UC) lumi-nescent properties that enable the conversion of low-energy photons (NIR photons) into high-energy photons (visible to ultraviolet photons) via multiphoton processes. However, one major limitation of conventional UCNPs is their low conversion efficiency especially under low-intensity laser excitation, mainly due to the extremely weak absorption of the sensitizer Yb~(3+) ion in the NIR wavelength range. Moreover, owing to the very narrow NIR absorption spectral window of UCNPs, the 980 nm laser is the most commonly used NIR excitation source to gen-erate UC emission.
机译:最近,近红外(NIR)到可见光的上转换纳米粒子(UCNP)已成为生物和医学应用中一类新型的强大工具,例如细胞标记,体内成像,荧光共振能量转移(基于FRET)的生物传感器,药物传递和光动力疗法,由于其独特的上转换(UC)发光特性,可将低能光子(NIR光子)转换为高能光子(可见于紫外光子) )通过多光子过程。然而,常规UCNP的一个主要限制是它们的低转换效率,特别是在低强度激光激发下,这主要是由于在NIR波长范围内敏化剂Yb〜(3+)离子的吸收极弱。此外,由于UCNP的NIR吸收光谱窗口非常窄,因此980 nm激光是产生UC发射最常用的NIR激发源。

著录项

  • 来源
    《Advanced Materials》 |2014年第18期|2831-2837|共7页
  • 作者单位

    Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing, 100190, P. R. China;

    Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences Beijing, 100049, P. R. China,College of Chemistry, Sichuan University Chengdu, 610064, P. R. China;

    Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences Beijing, 100049, P. R. China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing, 100190, P. R. China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing, 100190, P. R. China;

    Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences Beijing, 100049, P. R. China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing, 100190, P. R. China,State Key Laboratory of Material Processing and Die &. Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology Wuhan, 430074, P. R.China;

    Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing, 100190, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号