首页> 外文期刊>Advanced Materials >High-Mobility, Aligned Crystalline Domains of TIPS- Pentacene with Metastable Polymorphs Through Lateral Confinement of Crystal Growth
【24h】

High-Mobility, Aligned Crystalline Domains of TIPS- Pentacene with Metastable Polymorphs Through Lateral Confinement of Crystal Growth

机译:通过晶体生长的横向限制,具有亚稳多晶型的TIPS-并五苯的高迁移性,对齐的晶体结构域

获取原文
获取原文并翻译 | 示例
           

摘要

Solution processed organic semiconductors (OSCs) are expected to pave the way for low cost, large area, flexible, and transparent electronics. Small molecular OSCs are promising for these electronic applications, because of their high performance in organic thin film transistors (OTFTs). Recently, it has been shown that non-equilibrium molecular packing (strained lattice structure) can be realized in small molecular OSCs prepared by solution shearing, a coating method that can potentially be scaled up for large area film deposition. In the case of a model OSC, 6,13(bis-triisopropylsilylethynyl) pen-tacene (TIPS-pentacene), a packing motif with a π-π stacking distance closer than that of the equilibrium molecular packing was found. Consequently, the charge transport properties of TIPS-pentacene can be increased through the enhancement of electronic overlap between molecules. However, previous conditions where the metastable TIPS-pentacene polymorphs were obtained showed poor thin-film crystalline texture, with the presence of numerous grain boundaries and misaligned crystals, which significantly reduced charge carrier mobilities in the OTFTs.
机译:有望通过溶液处理的有机半导体(OSC)为低成本,大面积,灵活和透明的电子产品铺平道路。小分子OSC由于在有机薄膜晶体管(OTFT)中的高性能而在这些电子应用中很有希望。最近,已经显示出在通过溶液剪切制备的小分子OSC中可以实现非平衡分子堆积(应变晶格结构),该溶液剪切可以潜在地扩大用于大面积膜沉积。在OSC模型中,发现6,13(双-三异丙基甲硅烷基乙炔基)并五苯(TIPS-并五苯)的堆积图案的π-π堆积距离比平衡分子堆积的堆积距离小。因此,可以通过增强分子之间的电子重叠来提高TIPS-并五苯的电荷传输性能。但是,以前获得亚稳态TIPS-并五苯多晶型物的条件显示出较差的薄膜晶体质地,并存在许多晶界和未对准的晶体,这大大降低了OTFT中的电荷载流子迁移率。

著录项

  • 来源
    《Advanced Materials》 |2014年第3期|487-493|共7页
  • 作者单位

    Stanford University Department of Chemical Engineering Stanford CA, 94305, USA;

    Department of Materials Science and Engineering Stanford CA, 94305, USA;

    Stanford University Department of Chemical Engineering Stanford CA, 94305, USA;

    Department of Electrical Engineering Stanford CA, 94305, USA;

    Stanford University Department of Chemical Engineering Stanford CA, 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号