...
首页> 外文期刊>Advanced Materials >Layer-by-Layer Growth of CH_3NH_3PbI_(3-x)Cl_xfor Highly Efficient Planar Heterojunction Perovskite Solar Cells
【24h】

Layer-by-Layer Growth of CH_3NH_3PbI_(3-x)Cl_xfor Highly Efficient Planar Heterojunction Perovskite Solar Cells

机译:高效平面异质结钙钛矿太阳能电池CH_3NH_3PbI_(3-x)Cl_x的逐层生长

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to their broad spectral absorption, high charge-carrier mobility, small exciton binding energy (≈50 meV), and long exciton diffusion length, the organic-inorganic hybrid methylammonium lead halide perovskites (e.g., CH_3NH_3PbX_3, X = Cl, Br, I), have recently attracted enormous attention for thin-film photovoltaics. High-performance perovskite solar cells in both mesoporous scaffold and planar heterojunction architectures have been reported to show power conversion efficiencies (PCEs) over 19% with some dedicated energy-level engineering. Since conventional spin-casting has been currently used to form the perovskite active layer from a mixture of PbX_2 and CH_3NH_3X in a common solvent (e.g., dimethylformamide (DMF)), the poor solubility of PbX_2 usually leads to large morphological variations (even with pinholes) for the solution-cast perovskite layer, and hence unstable device performance. Despite the recent rapid increase in PCEs of various perovskite solar cells, therefore, morphological control is a bottleneck in further development of the state-of-the-art perovskite solar cells. In this context, a sequential deposition method has been recently reported for the formation of the perovskite by first introducing lead iodide (PbI_2) into a nanoporous titanium dioxide film, followed by exposing it to a solution of CH_3NH_3I to produce the perovskite layer without the uncontrollable precipitation of the perovskite in the casting solution. Although this two-step method permitted a much better control over the perovskite morphology (and hence a high PCE of approximately 15%) with respect to the one-step solution casting, it is still difficult to control the morphology of PbI_2 film made from solution casting due to its intrinsically poor solubility, and the porous metal oxide film is needed for the surface-assisted complete transformation of PbI_2 and CH_3NH_3I into the perovskite layer.
机译:由于其广泛的光谱吸收,高的电荷载流子迁移率,小的激子结合能(≈50meV)和长的激子扩散长度,有机-无机杂化甲基铵卤化铅铅钙钛矿(例如,CH_3NH_3PbX_3,X = Cl,Br,I ),最近引起了薄膜光伏的巨大关注。据报道,通过一些专门的能级工程,介孔支架和平面异质结架构中的高性能钙钛矿太阳能电池均显示出超过19%的功率转换效率(PCE)。由于目前已使用常规的旋铸法在常见溶剂(例如二甲基甲酰胺(DMF))中由PbX_2和CH_3NH_3X的混合物形成钙钛矿活性层,因此PbX_2的不良溶解性通常会导致较大的形貌变化(甚至带有针孔) )用于溶液浇铸钙钛矿层,因此器件性能不稳定。因此,尽管最近各种钙钛矿太阳能电池的PCE迅速增加,但是形态控制仍是先进钙钛矿太阳能电池进一步发展的瓶颈。在这种情况下,最近报道了一种顺序沉积法,用于形成钙钛矿,方法是先将碘化铅(PbI_2)引入纳米多孔二氧化钛薄膜中,然后将其暴露于CH_3NH_3I溶液中以生产钙钛矿层,而不受控制钙钛矿在浇铸溶液中的沉淀。尽管相对于一步溶液浇铸,这种两步法可以更好地控制钙钛矿的形貌(因此大约有15%的高PCE),但是仍然很难控制由溶液制成的PbI_2膜的形貌。由于其固有的不良溶解性,因此需要浇铸,并且需要多孔金属氧化物膜将PbI_2和CH_3NH_3I完全表面转化为钙钛矿层。

著录项

  • 来源
    《Advanced Materials》 |2015年第6期|1053-1059|共7页
  • 作者单位

    Center of Advanced Science and Engineering for Carbon (Case4Carbon) Department of Macromolecular Science and Engineering, Case School of Engineering Case Western Reserve University 10900 Euclid Avenue, Cleveland, Ohio 44106, USA;

    Center of Advanced Science and Engineering for Carbon (Case4Carbon) Department of Macromolecular Science and Engineering, Case School of Engineering Case Western Reserve University 10900 Euclid Avenue, Cleveland, Ohio 44106, USA;

    Center of Advanced Science and Engineering for Carbon (Case4Carbon) Department of Macromolecular Science and Engineering, Case School of Engineering Case Western Reserve University 10900 Euclid Avenue, Cleveland, Ohio 44106, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号