首页> 外文期刊>Advanced Materials >An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries
【24h】

An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries

机译:用于铝离子电池的创新的冻干还原还原氧化石墨烯负载的SnS2阴极活性材料

获取原文
获取原文并翻译 | 示例
           

摘要

Rechargeable aluminum-ion batteries (AIBs) are attractive new generation energy storage devices due to its low cost, high specific capacity, and good safety. However, the lack of suitable electrode materials with high capacity and enhanced rate performance makes it difficult for real applications. Herein, the preparation of 3D reduced graphene oxide-supported SnS2 nanosheets hybrid is reported as a new type of cathode material for AIBs. The resultant material demonstrates one of the highest capacities of 392 mAh g(-1) at 100 mA g(-1) and good cycling stability. It is revealed that the layered SnS2 nanosheets anchored on 3D reduced graphene oxide network endows the composite not only high electronic conductivity but also fast kinetic diffusion pathway. As a result, the hybrid material exhibits high rate performance (112 mAh g(-1) at 1000 mA g(-1)). The detailed characterization also verifies the intercalation and deintercalation of relatively large chloroaluminate anions into the layered SnS2 during the charge-discharge process, which is important for better understanding of the electrochemical process of AIBs.
机译:可充电铝离子电池(AIB)低成本,高比容量和良好的安全性是吸引人的新一代储能设备。然而,缺乏具有高容量和增强的倍率性能的合适的电极材料使得难以用于实际应用。在本文中,报道了制备3D还原的氧化石墨烯负载的SnS 2纳米片混杂物作为用于AIB的新型阴极材料。所得材料在100 mA g(-1)时显示出392 mAh g(-1)的最大容量之一,并具有良好的循环稳定性。揭示了锚定在3D还原氧化石墨烯网络上的层状SnS2纳米片不仅赋予复合材料高电导率,而且具有快速的动力学扩散路径。结果,杂化材料表现出高倍率性能(在1000 mA g(-1)时为112 mAh g(-1))。详细的表征还验证了在充放电过程中较大的氯铝酸盐阴离子在层状SnS2中的嵌入和脱嵌,这对于更好地理解AIB的电化学过程很重要。

著录项

  • 来源
    《Advanced Materials》 |2017年第48期|1606132.1-1606132.6|共6页
  • 作者单位

    Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia|Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia;

    Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia|Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia;

    Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia|Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia;

    Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia|Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia;

    Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia|Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia;

    Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia|Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号