首页> 外文期刊>Advanced Materials >Granular Nanostructure: A Facile Biomimetic Strategy for the Design of Supertough Polymeric Materials with High Ductility and Strength
【24h】

Granular Nanostructure: A Facile Biomimetic Strategy for the Design of Supertough Polymeric Materials with High Ductility and Strength

机译:颗粒纳米结构:一种具有高延展性和强度的超韧聚合物材料的仿生策略

获取原文
获取原文并翻译 | 示例
           

摘要

The realization of high strength, large ductility, and great toughness for polymeric materials is a vital factor for practical applications in industry. Unfortunately, until now this remains a huge challenge due to the common opposing trends that exist when promoting improvements in these properties using materials design strategies. In the natural world, the cuticle of mussel byssus exhibits a breaking strain as high as 100%, which is revealed to arise from an architectural granular microphase-separated structure within the protein matrix. Herein, a facile biomimetic designed granular nanostructured polymer film is reported. Such biomimetic nanostructured polymer films show a world-record toughness of 122 (+/- 6.1) J g(-1) as compared with other polyvinyl alcohol films, with a breaking strain as high as 205% and a high tensile strength of 91.2 MPa, which is much superior to those of most engineering plastics. This portfolio of outstanding properties can be attributed to the unique nanoscale granular phase-separated structure of this material. These biomimetic designed polymer films are expected to find promising applications in tissue engineering and biomaterials fields, such as artificial skin and tendon, which opens up an innovative methodology for the design of robust polymer materials for a range of innovative future applications.
机译:聚合物材料的高强度,大延展性和高韧性的实现是工业上实际应用的重要因素。不幸的是,由于使用材料设计策略促进这些特性的改进时,存在着共同的相反趋势,因此迄今为止,这仍然是一个巨大的挑战。在自然界中,贻贝的表皮表现出高达100%的断裂应变,这表明它是由蛋白质基质内的一种结构性颗粒微相分离结构引起的。在此,报道了一种容易仿生设计的颗粒状纳米结构聚合物膜。与其他聚乙烯醇薄膜相比,这种仿生纳米结构聚合物薄膜的世界纪录韧性为122(+/- 6.1)J g(-1),断裂应变高达205%,抗张强度高达91.2 MPa ,远远优于大多数工程塑料。这种出色的性能组合可以归因于这种材料独特的纳米级颗粒相分离结构。这些仿生设计的聚合物薄膜有望在组织工程和生物材料领域(如人造皮肤和肌腱)中找到有前途的应用,这为设计坚固的聚合物材料提供了一种创新的方法,可用于一系列创新的未来应用。

著录项

  • 来源
    《Advanced Materials》 |2017年第46期|1704661.1-1704661.7|共7页
  • 作者单位

    Zhejiang A&F Univ, Dept Mat, Hangzhou 311300, Zhejiang, Peoples R China|Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia;

    Univ Queensland, Mat Engn, Brisbane, Qld 4072, Australia|Univ Queensland, Ctr Adv Mat Proc & Mfg, Brisbane, Qld 4072, Australia;

    Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia|Jiaxing Univ, China Australia Inst Adv Mat & Manufacture, Jiaxing 314000, Peoples R China|Univ Queensland, Mat Engn, Brisbane, Qld 4072, Australia;

    Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia;

    Deakin Univ, Inst Frontier Mat, Polymers Res Grp, Locked Bag 20000, Geelong, Vic 3220, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bioinspired; ductility; granular nanostructures; polymers; supertough;

    机译:生物启发;延展性;颗粒纳米结构;聚合物;超韧;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号