...
首页> 外文期刊>Advanced Functional Materials >In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering
【24h】

In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering

机译:原位多孔结构:生物可降解的基于二肽的聚磷腈和聚酯共混物生产再生工程用基质的独特聚合物侵蚀机理

获取原文
获取原文并翻译 | 示例
           

摘要

Synthetic biodegradable polymers serve as temporary substrates that accommodate cell infiltration and tissue in-growth in regenerative medicine. To allow tissue in-growth and nutrient transport, traditional three-dimensional (3D) scaffolds must be prefabricated with an interconnected porous structure. Here a unique polymer erosion process through which polymer matrices evolve from a solid coherent film to an assemblage of microspheres with an interconnected 3D porous structure is demonstrated for the first time. This polymer system is developed on the highly versatile platform of polyphosp-hazene-polyester blends. Co-substituting a polyphosphazene backbone with both hydrophilic glycylglycine dipeptide and hydrophobic 4-phenylphenoxy group generates a polymer with strong hydrogen bonding capacity. Rapid hydrolysis of the polyester component permits the formation of 3D void space filled with self-assembled polyphosphazene spheres. Characterization of such self-assembled porous structures reveals macropores (10-100 μm) between spheres as well as micro- and nanopores on the sphere surface. A similar degradation pattern is confirmed in vivo using a rat subcutaneous implantation model. 12 weeks of implantation results in an interconnected porous structure with 82-87% porosity. Cell infiltration and collagen tissue ingrowth between microspheres observed by histology confirms the formation of an in situ 3D interconnected porous structure. It is determined that the in situ porous structure results from unique hydrogen bonding in the blend promoting a three-stage degradation mechanism. The robust tissue in-growth of this dynamic pore forming scaffold attests to the utility of this system as a new strategy in regenerative medicine for developing solid matrices that balance degradation with tissue formation.
机译:合成的生物可降解聚合物用作临时基质,可适应再生医学中的细胞浸润和组织向内生长。为了允许组织向内生长和营养运输,传统的三维(3D)支架必须预先制成具有相互连接的多孔结构。在此首次展示了独特的聚合物腐蚀过程,通过该过程,聚合物基质从固体相干薄膜演变为具有相互连接的3D多孔结构的微球体。该聚合物系统是在聚磷-ha烯-聚酯共混物的高度通用的平台上开发的。将聚磷腈主链与亲水性甘氨酰甘氨酸二肽和疏水性4-苯基苯氧基共取代可制得具有强氢键合能力的聚合物。聚酯组分的快速水解可形成充满自组装聚磷腈球的3D空隙空间。此类自组装多孔结构的表征揭示了球之间的大孔(10-100μm)以及球表面上的微孔和纳米孔。使用大鼠皮下植入模型在体内证实了类似的降解模式。植入12周后将形成互连的多孔结构,其孔隙率为82-87%。通过组织学观察到的细胞浸润和微球之间的胶原组织向内生长证实了原位3D互连多孔结构的形成。已经确定,原位多孔结构是由共混物中独特的氢键促成的三阶段降解机理导致的。这种动态孔形成支架的强大组织向内生长证明了该系统的实用性,将其作为再生医学中用于开发平衡降解与组织形成的固体基质的新策略。

著录项

  • 来源
    《Advanced Functional Materials》 |2010年第17期|P.2794-2806|共13页
  • 作者单位

    Department of Orthopaedic Surgery University of Connecticut Farmington, CT, 06030 (USA) Department of Chemical Engineering University of Virginia Charlottesville, VA, 22904 (USA);

    Department of Chemical Materials and Biomolecular Engineering University of Connecticut Storrs, CT, 06269 (USA) Department of Orthopaedic Surgery University of Connecticut Farmington, CT, 06030 (USA);

    rnDepartment of Chemical Materials and Biomolecular Engineering University of Connecticut Storrs, CT, 06269 (USA) Department of Orthopaedic Surgery University of Connecticut Farmington, CT, 06030 (USA);

    rnDepartment of Chemical Materials and Biomolecular Engineering University of Connecticut Storrs, CT, 06269 (USA) Department of Orthopaedic Surgery University of Connecticut Farmington, CT, 06030 (USA);

    rnDepartment of Chemical Engineering University of Virginia Charlottesville, VA, 22904 (USA);

    rnDepartment of Chemistry The Pennsylvania State University University Park, PA, 16802 (USA);

    rnDepartment of Chemistry The Pennsylvania State University University Park, PA, 16802 (USA);

    rnDepartment of Chemistry The Pennsylvania State University University Park, PA, 16802 (USA);

    rnDepartment of Chemical Materials and Biomolecular Engineering University of Connecticut Storrs, CT, 06269 (USA) Department of Orthopaedic Surgery University of Connecticut Farmington, CT, 06030 (USA);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号