首页> 外文期刊>Advanced Functional Materials >Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering
【24h】

Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering

机译:通过堆叠多层和粒度工程改善石墨烯扩散壁垒

获取原文
获取原文并翻译 | 示例
           

摘要

It is shown that the performance of graphene diffusion barriers can be enhanced by stacking multiple layers of graphene and increasing grain size. The focus is on large-area barriers of graphene grown by chemical vapor deposition (CVD) in the context of passivating an underlying Cu substrate from oxidation in air at 200 C and use imaging Raman spectroscopy as a tool to temporally and spatially map the barrier performance and to guide barrier design. At 200 C in air, Cu oxidation proceeds in multiple regimes: first slowly via transport through atomic-scale grain boundary defects inherent to CVD-graphene and then more rapidly as the graphene itself degrades and new defects are formed. In the initial regime, the graphene passivates better than previously reported. Whereas oxidation through single sheets primarily occurs through grain boundaries, oxidation through multiple sheets is spatially confined to their intersection. Performance further increases with grain-size. The degradation of the graphene itself at 200 ℃ ultimately limits high temperature but suggests superior low temperature barrier performance. This study is expected to improve the understanding of mass transport through CVD-graphene materials and lead to improved large area graphene materials for barrier applications.
机译:结果表明,通过堆叠多层石墨烯和增加晶粒尺寸可以增强石墨烯扩散阻挡层的性能。重点关注通过化学气相沉积(CVD)生长的石墨烯的大面积阻挡层,该保护层是在200°C的温度下钝化下面的Cu衬底免受空气中的氧化作用,并使用成像拉曼光谱作为在时间和空间上绘制阻挡层性能的工具并指导屏障设计。在200°C的空气中,Cu氧化会以多种方式进行:首先缓慢地迁移通过CVD石墨烯固有的原子级晶界缺陷,然后随着石墨烯本身的降解并形成新的缺陷而更快地进行氧化。在初始状态下,石墨烯的钝化性能优于先前报道的钝化性能。通过单层的氧化主要通过晶界发生,而通过多层的氧化在空间上局限于它们的交点。性能随着粒度的增加而进一步提高。石墨烯本身在200℃下的降解最终限制了高温,但显示出优异的低温阻隔性能。预期这项研究将增进对通过CVD石墨烯材料进行质量传输的理解,并导致改进用于阻隔应用的大面积石墨烯材料。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第29期|3638-3644|共7页
  • 作者单位

    Department of Materials Science and Engineering University of Wisconsin-Madison 1509 University Avenue Madison, WI 53706, USA;

    Department of Materials Science and Engineering University of Wisconsin-Madison 1509 University Avenue Madison, WI 53706, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号