首页> 外文期刊>Advanced Functional Materials >Tailoring Electron-Transfer Barriers for Zinc Oxide/C_(60) Fullerene Interfaces
【24h】

Tailoring Electron-Transfer Barriers for Zinc Oxide/C_(60) Fullerene Interfaces

机译:定制氧化锌/ C_(60)富勒烯界面的电子转移势垒

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The interfacial electronic structure between oxide thin films and organic semiconductors remains a key parameter for optimum functionality and performance of next-generation organic/hybrid electronics. By tailoring defect concentrations in transparent conductive ZnO films, we demonstrate the importance of controlling the electron transfer barrier at the interface with organic acceptor molecules such as C_(60·) A combination of electron spectros-copy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers. Extensive experimental and first principles calculations reveal the controllable formation of hybridized interface states and charge transfer between shallow donor defects in the oxide layer and the molecular adsorbate. Importantly, it is shown that removal of shallow donor intragap states causes a larger barrier for electron injection. Thus, hybrid interface states constitute an important gateway for nearly barrier-free charge carrier injection. These findings open new avenues to understand and tailor interfaces between organic semiconductors and transparent oxides, of critical importance for novel optoelectronic devices and applications in energy-conversion and sensor technologies.
机译:氧化物薄膜和有机半导体之间的界面电子结构仍然是下一代有机/混合电子产品最佳功能和性能的关键参数。通过调整透明导电ZnO薄膜中的缺陷浓度,我们证明了控制与有机受体分子(例如C_(60·))界面处的电子转移势垒的重要性电子光谱,密度泛函理论计算和器件表征的结合用于确定能带对准和电子注入势垒。大量的实验和第一性原理计算揭示了可混合界面态的形成以及氧化物层中浅施主缺陷与分子被吸附物之间的电荷转移。重要的是,已表明,去除浅的供体内部能隙状态会引起更大的电子注入势垒。因此,混合接口状态构成了几乎无障碍电荷载流子注入的重要通道。这些发现为理解和定制有机半导体与透明氧化物之间的界面开辟了新途径,这对于新型光电器件及其在能量转换和传感器技术中的应用至关重要。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第46期|7381-7389|共9页
  • 作者单位

    Department of Electrical Engineering Princeton University Princeton, New Jersey 08544, USA;

    Department of Chemistry and Biochemistry University of Arizona Tucson, Arizona 85721, USA;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA;

    School of Mechanical Engineering and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0250;

    National Center for Photovoltaics National Renewable Energy Laboratory Golden, Colorado 80401, USA;

    National Center for Photovoltaics National Renewable Energy Laboratory Golden, Colorado 80401, USA;

    National Center for Photovoltaics National Renewable Energy Laboratory Golden, Colorado 80401, USA;

    School of Mechanical Engineering and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0250;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA;

    Department of Electrical Engineering Princeton University Princeton, New Jersey 08544, USA;

    Department of Chemistry and Biochemistry University of Arizona Tucson, Arizona 85721, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号