首页> 外文期刊>Advanced Functional Materials >A Lithium-Sulfur Battery with a High Areal Energy Density
【24h】

A Lithium-Sulfur Battery with a High Areal Energy Density

机译:区域能量密度高的锂硫电池

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The battery community has recently witnessed a considerable progress in the cycle lives of lithium-sulfur (Li-S) batteries, mostly by developing the electrode structures that mitigate fatal dissolution of lithium polysulfides. Nonetheless, most of the previous successful demonstrations have been based on limited areal capacities. For realistic battery applications, however, the chronic issues from both the anode (lithium dendrite growth) and the cathode (lithium polysulfide dissolution) need to be readdressed under much higher loading of sulfur active material. To this end, the current study integrates the following three approaches in a systematic manner: 1) the sulfur electrode material with diminished lithium polysulfide dissolution by the covalently bonded sulfur-carbon microstructure, 2) mussel-inspired polydopamine coating onto the separator that suppresses lithium dendrite growth by wet-adhesion between the separator and Li metal, and 3) addition of cesium ions (Cs~+) to the electrolyte to repel incoming Li ions and thus prevent Li dendrite growth. This combined strategy resolves the long-standing problems from both electrodes even under the very large sulfur-carbon composite loading of 17 mg cm~(-2) in the sulfur electrode, enabling the highest areal capacity (9 mAh cm~(-2)) to date while preserving stable cycling performance.
机译:电池社区最近见证了锂硫(Li-S)电池循环寿命方面的显着进步,这主要是通过开发减轻多硫化锂致命溶解的电极结构而实现的。但是,大多数以前的成功示威都是基于有限的区域能力。然而,对于实际的电池应用,需要在高得多的硫活性材料负载量下解决阳极(树枝状锂的生长)和阴极(聚硫化锂的溶解)的长期问题。为此,当前的研究以系统的方式整合了以下三种方法:1)通过共价键合的硫碳微结构减少多硫化锂溶解的硫电极材料,2)贻贝启发式聚多巴胺涂层涂覆在抑制锂的隔膜上隔膜和锂金属之间的湿粘合使枝晶生长,以及3)向电解液中添加铯离子(Cs〜+)以排斥进入的锂离子,从而阻止锂枝晶生长。这种组合策略解决了两个电极长期存在的问题,即使在硫电极中非常大的17 mg cm〜(-2)的硫碳复合负载下,也可以实现最大的面容量(9 mAh cm〜(-2) ),同时保持稳定的循环性能。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第34期|5359-5367|共9页
  • 作者单位

    Graduate School of Energy, Environment Water and Sustainability (EEWS) and Center for Nature-inspired Technology (CNiT) KAIST Institute NanoCentury Korea Advanced Institute of Science and Technology (KAIST) 291 Daehakro, Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Graduate School of Energy, Environment Water and Sustainability (EEWS) and Center for Nature-inspired Technology (CNiT) KAIST Institute NanoCentury Korea Advanced Institute of Science and Technology (KAIST) 291 Daehakro, Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Graduate School of Energy, Environment Water and Sustainability (EEWS) and Center for Nature-inspired Technology (CNiT) KAIST Institute NanoCentury Korea Advanced Institute of Science and Technology (KAIST) 291 Daehakro, Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Graduate School of Energy, Environment Water and Sustainability (EEWS) and Center for Nature-inspired Technology (CNiT) KAIST Institute NanoCentury Korea Advanced Institute of Science and Technology (KAIST) 291 Daehakro, Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Graduate School of Energy, Environment Water and Sustainability (EEWS) and Center for Nature-inspired Technology (CNiT) KAIST Institute NanoCentury Korea Advanced Institute of Science and Technology (KAIST) 291 Daehakro, Yuseong-gu, Daejeon 305-701, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号