...
首页> 外文期刊>Advanced Functional Materials >Bioinspired Scaffolds with Varying Pore Architectures and Mechanical Properties
【24h】

Bioinspired Scaffolds with Varying Pore Architectures and Mechanical Properties

机译:具有不同孔隙结构和机械性能的生物启发支架

获取原文
获取原文并翻译 | 示例

摘要

Scaffolds with potential biological applications having a variety of micro-structural and mechanical properties can be fabricated by freezing colloidal solutions into porous solids. In this work, the structural and mechanical properties of TiO_2 freeze cast with different soluble additives, including polyethylene glycol, NaOH or HCl, and isopropanol alcohol, are characterized to determine the effects of slurry viscosity, pH, and alcohol concentration on the freezing process. TiO_2 powders mixed with water and these different additives are directionally frozen in a mold, then sublimated and sintered to create the porous scaffolds. The different scaffolds are characterized to compare the compressive strength, modulus, porosity, and pore morphology. For all scaffolds, the overall porosity remains constant (80-85%). By changing the concentration of each additive, the lamellar thickness, pore area, and aspect ratio vary significantly, showing inverse relationships to both the compressive strength and modulus. The strength is predicted from the pore aspect ratio of the scaffolds when subjected to compressive loading with the primary failure mode identified as Euler buckling. TiO_2 scaffolds freeze cast with different soluble additives are suitable for biomedical applications, such as bone replacements, requiring high porosity and specific pore morphologies.
机译:通过将胶体溶液冷冻成多孔固体,可以制造具有多种微结构和机械特性的具有潜在生物学应用的支架。在这项工作中,用不同的可溶性添加剂(包括聚乙二醇,NaOH或HCl和异丙醇)对TiO_2冻铸的结构和机械性能进行了表征,以确定浆液粘度,pH和醇浓度对冷冻过程的影响。将与水和这些不同添加剂混合的TiO_2粉末在模具中定向冻结,然后升华并烧结,以形成多孔支架。不同支架的特征是比较抗压强度,模量,孔隙率和孔的形态。对于所有脚手架,总孔隙率保持恒定(80-85%)。通过改变每种添加剂的浓度,层状厚度,孔面积和长径比会发生显着变化,与抗压强度和模量呈反比关系。强度是从支架的孔长宽比预测的,当受到压缩载荷时,主要破坏模式被确定为欧拉屈曲。用不同的可溶性添加剂冷冻铸造的TiO_2支架适用于生物医学应用,例如需要高孔隙率和特定孔形态的骨替代物。

著录项

  • 来源
    《Advanced Functional Materials 》 |2014年第14期| 1978-1987| 共10页
  • 作者单位

    Materials Science and Engineering Program University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA;

    Department of Mechanical and Aerospace Engineering University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA;

    Department of Mechanical and Aerospace Engineering University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA;

    Materials Science and Engineering Program University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Department of Mechanical and Aerospace Engineering University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Department of NanoEngineering University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA;

    Materials Science and Engineering Program University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Department of Mechanical and Aerospace Engineering University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号