首页> 外文期刊>Advanced Functional Materials >Quantifying the Energy Barriers and Elucidating the Charge Transport Mechanisms across Interspherulite Boundaries in Solution-Processed Organic Semiconductor Thin Films
【24h】

Quantifying the Energy Barriers and Elucidating the Charge Transport Mechanisms across Interspherulite Boundaries in Solution-Processed Organic Semiconductor Thin Films

机译:量化能障并阐明溶液处理的有机半导体薄膜中跨球晶边界的电荷传输机制

获取原文
获取原文并翻译 | 示例
           

摘要

Grain boundaries act as bottlenecks to charge transport in devices comprising polycrystalline organic active layers. To improve device performance, the nature and resulting impact of these boundaries must be better understood. The densities and energy levels of shallow traps within and across triethylsilylethynyl anthradithiophene (TES ADT) spherulites are quantified. The trap density is 7 x 10(10) cm(-2) in devices whose channels reside within a single spherulite and up to 3 x 10(11) cm(-2) for devices whose channels span a spherulite boundary. The activation energy for charge transport, E-A, increases from 34 meV within a spherulite to 50-66 meV across a boundary, depending on the angle of molecular mismatch. Despite being molecular in nature, these E-A's are more akin to those found for charge transport in polymer semiconductors. Presumably, trapped TES ADT at the boundary can electrically connect neighboring spherulites, similar to polymer chains connecting crystallites in polymer semiconductor thin films.
机译:晶界是包含多晶有机活性层的器件中电荷传输的瓶颈。为了提高设备性能,必须更好地理解这些边界的性质和所产生的影响。对三乙基甲硅烷基乙炔基蒽噻吩(TES ADT)球晶内部和之间的浅陷阱的密度和能级进行了定量。在通道位于单个球晶内的器件中,阱密度为7 x 10(10)cm(-2),而对于通道跨越球晶边界的器件,阱密度为3 x 10(11)cm(-2)。电荷转移的活化能E-A从球晶内的34 meV增至跨边界的50-66 meV,具体取决于分子失配的角度。尽管具有分子性质,但这些E-A与聚合物半导体中用于电荷传输的E-A更相似。据推测,在边界处捕获的TES ADT可以电连接相邻的球晶,类似于连接聚合物半导体薄膜中微晶的聚合物链。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第35期|5662-5668|共7页
  • 作者单位

    Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA;

    Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA;

    Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA;

    Univ Kentucky, Dept Chem, Lexington, KY 40506 USA;

    Univ Kentucky, Dept Chem, Lexington, KY 40506 USA;

    Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA;

    Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号