...
首页> 外文期刊>Advanced Functional Materials >Hierarchical Ni-Co Hydroxide Petals on Mechanically Robust Graphene Petal Foam for High-Energy Asymmetric Supercapacitors
【24h】

Hierarchical Ni-Co Hydroxide Petals on Mechanically Robust Graphene Petal Foam for High-Energy Asymmetric Supercapacitors

机译:机械坚固的石墨烯花瓣泡沫上的Ni-Co氢氧化氢分层花瓣,用于高能不对称超级电容器

获取原文
获取原文并翻译 | 示例

摘要

A hierarchical structure consisting of Ni-Co hydroxide nanopetals (NCHPs) grown on a thin free-standing graphene petal foam (GPF) has been designed and fabricated by a two-step process for pseudocapacitive electrode applications. The mechanical behavior of GPFs has been, for the first time to our knowledge, quantitatively measured from in situ scanning electron microscope characterization of the petal foams during in-plane compression and bending processes. The Young's modulus of a typical GPF is 3.42 GPa, indicating its outstanding mechanical robustness as a nanotemplate. The GPF/NCHP electrodes exhibit volumetric capacitances as high as 765 F cm(-3), equivalent to an areal capacitance of 15.3 F cm(-2) and high rate capability. To assess practical functionality, two-terminal asymmetric solid-state supercapacitors with 3D GPF/NCHPs as positive electrodes are fabricated and shown to exhibit outstanding energy and power densities, with maximum average energy density of approximate to 10 mWh cm(-3) and maximum power density of approximate to 3 W cm(-3), high rate capability (a capacitance retention of approximate to 60% at 100 mA cm(-2)), and excellent long-term cyclic stability (full capacitance retention over 15 000 cycles).
机译:已经通过两步工艺设计和制造了由在稀薄的自支撑石墨烯花瓣泡沫(GPF)上生长的Ni-Co氢氧化物纳米花瓣(NCHP)构成的分层结构。据我们所知,GPF的机械性能是首次通过平面压缩和弯曲过程中花瓣泡沫的原位扫描电子显微镜表征进行定量测量。典型GPF的杨氏模量为3.42 GPa,表明它作为纳米模板具有出色的机械强度。 GPF / NCHP电极具有高达765 F cm(-3)的体积电容,相当于15.3 F cm(-2)的面电容和高倍率能力。为了评估实用功能,制造了具有3D GPF / NCHPs作为正极的两端非对称固态超级电容器,并显示出出色的能量和功率密度,最大平均能量密度约为10 mWh cm(-3),最大大约3 W cm(-3)的功率密度,高倍率能力(100 mA cm(-2)时的电容保持率约为60%)和出色的长期循环稳定性(在15 000个循环中具有完全的电容保持率) )。

著录项

  • 来源
    《Advanced Functional Materials 》 |2016年第30期| 5460-5470| 共11页
  • 作者单位

    Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA|Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;

    Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA|Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA|Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China;

    Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China;

    Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA|Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;

    Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China;

    Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA|Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号