...
首页> 外文期刊>Advanced Functional Materials >Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis
【24h】

Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis

机译:纳米压印光刻促进等离子体光子耦合,用于增强的光电导性和光催化

获取原文
获取原文并翻译 | 示例

摘要

Imprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices.
机译:印记光刻已成为可靠,可重复的和快速的用于图案化胶体纳米结构的方法。作为对自上而下的光刻方法的有希望的替代方案,纳米纳米图的制造因此变得有效和直截了当。在该研究中,报道了干扰光刻(IL)和纳米体积印记光刻的融合,其各种靶衬底上的来自透射电子显微镜网格上的碳膜与无机和掺杂聚合物半导体的各种靶衬底。使用胶体油墨和IL-产生的聚二甲基硅氧烷印章,在厘米级上印刷具有75%的百分比的75%的屈服性光子晶体。金(Au)纳米颗粒的原子平滑面,单晶和单分散胶体构建块用于在二氧化钛(TiO2)板波导的顶部上打印1d等离子体光栅,产生具有优于10nm光谱线的波导 - 等离子偏光线-宽度。通过双端电流测量来确认等离子体诱导的热电子,并在引导条件下增加光响应性。具有Au / TiO2异质结的制造的杂化结构增强了使用产生的热电子的甲基橙(Mo)染料分子的劣化的光催化过程。因此,在硅,玻璃,Au膜和萘二酰亚胺聚合物上证明的这种简单的胶印技术标志着光电器件中大规模实施的重要里程碑。

著录项

  • 来源
    《Advanced Functional Materials 》 |2021年第36期| 2105054.1-2105054.11| 共11页
  • 作者单位

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Friedrich Alexander Univ Erlangen Nurnberg Inst Particle Technol Cauerstr 4 D-91058 Erlangen Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Indian Inst Technol Delhi Dept Phys New Delhi 110016 India;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Inst Solid State Res Leibniz Inst Festkorper & Werkstoffforsch Helmholtzstr 20 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Tech Univ Dresden Phys Chem Polymer Mat Bergstr 66 D-01069 Dresden Germany;

    Friedrich Alexander Univ Erlangen Nurnberg Inst Particle Technol Cauerstr 4 D-91058 Erlangen Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Tech Univ Dresden Ctr Adv Elect Dresden Cfaed D-01062 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    colloidal nanospheres; nanoimprint lithography; photocatalysis; plasmon-induced charge transfer; waveguide-plasmon polariton;

    机译:胶体纳米球;纳米压印光刻;光催化;等离子体诱导的电荷转移;波导 - 等离子体Polariton;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号