...
首页> 外文期刊>Advanced Functional Materials >Graphene Oxide Mimics Biological Signaling Cue to Rescue Starving Bacteria
【24h】

Graphene Oxide Mimics Biological Signaling Cue to Rescue Starving Bacteria

机译:石墨烯氧化物模拟生物信号线拯救饥饿细菌

获取原文
获取原文并翻译 | 示例
           

摘要

There is extensive debate about how 2D nanomaterials such as graphene oxide (GO) affect bacteria. Various effects of GO are proposed, including bacterial growth inhibition or enhancement, killing, and no activity. Herein, we report that GO protects Staphylococcus aureus bacterial cells from death in starvation conditions with up to a 1000-fold improvement in cell viability. Transcriptomic profiling reveals that bacterial cells in starvation conditions generally shut down metabolic activity, while only cells incubated with GO increase production of specific enzymes involved in the glyoxalase detoxification pathway along with repressed autolysis. The oxygen-containing functional groups of GO resemble the molecular structure of methylglyoxal, which bacteria produce to adapt to nutrient imbalances and is detoxified by glyoxalase enzymes. The ability of GO to enable bacterial cell survival in starvation conditions and accompanying cellular responses support that bacterial cells perceive GO as a methylglyoxal-mimicking nanomaterial cue to reshuffle cellular metabolism and defenses.
机译:关于2D纳米材料(如石墨烯氧化物(GO)影响细菌,有广泛的辩论。提出了各种效果,包括细菌生长抑制或增强,杀害和无活性。在此,我们报告了,在饥饿条件下,可以保护葡萄球菌细菌细胞免受饥饿条件的死亡,其在细胞活力的提高至1000倍。转录组分析表明,饥饿条件中的细菌细胞通常被关闭代谢活性,同时只能孵育的细胞加培养的细胞,增加甘氨酸酶解毒途径中参与的特定酶的产生以及压抑的自溶。含氧的官能团的生长类似于甲基乙二醛的分子结构,细菌产生以适应营养性失衡并通过乙醛酸酶解毒。在饥饿条件下使细菌细胞存活和伴随细胞反应的能力支持该细菌细胞感知作为甲基乙醛模拟纳米材料提示以重新洗脱细胞代谢和防御。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第25期|2102328.1-2102328.7|共7页
  • 作者单位

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore|Sungkyunkwan Univ Sch Chem Engn Suwon 16419 South Korea|Sungkyunkwan Univ Biomed Inst Convergence SKKU BICS Suwon 16419 South Korea;

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore|Sungkyunkwan Univ Sch Chem Engn Suwon 16419 South Korea|Sungkyunkwan Univ Biomed Inst Convergence SKKU BICS Suwon 16419 South Korea;

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore;

    Singapore Ctr Environm Life Sci Engn Singapore 637551 Singapore;

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore;

    Singapore Ctr Environm Life Sci Engn Singapore 637551 Singapore;

    Brno Univ Technol Cent European Inst Technol Future Energy & Innovat Lab Brno 61600 Czech Republic|Mendel Univ Brno Dept Chem & Biochem 3D Printing & Innovat Hub Zemedelska 1 CZ-61300 Brno Czech Republic|China Med Univ China Med Univ Hosp Dept Med Res Taichung 40402 Taiwan|Yonsei Univ Dept Chem & Biomol Engn Seoul 03722 South Korea;

    Singapore Ctr Environm Life Sci Engn Singapore 637551 Singapore|Nanyang Technol Univ Sch Biol Sci Singapore 637551 Singapore|Univ Technol Sydney Ithree Inst Ultimo NSW 2007 Australia;

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore|Singapore Ctr Environm Life Sci Engn Singapore 637551 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bacterias; graphene oxide; nanomaterials; oxidative stress; surface functionalization;

    机译:菌株;石墨烯;纳米材料;氧化应激;表面官能化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号