...
首页> 外文期刊>Advanced Functional Materials >Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities
【24h】

Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities

机译:用于水性可充电的多价离子电池的阴极设计:挑战和机遇

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth in energy consumption, renewable energy is a promising solution. However, renewable energy (e.g., wind, solar, and tidal) is discontinuous and irregular by nature, which poses new challenges to the new generation of large-scale energy storage devices. Rechargeable batteries using aqueous electrolyte and multivalent ion charge are considered more suitable candidates compared to lithium-ion and lead-acid batteries, owing to their low cost, ease of manufacture, good safety, and environmentally benign characteristics. However, some substantial challenges hinder the development of aqueous rechargeable multivalent ion batteries (AMVIBs), including the narrow stable electrochemical window of water (approximate to 1.23 V), sluggish ion diffusion kinetics, and stability issues of electrode materials. To address these challenges, a range of encouraging strategies has been developed in recent years, in the aspects of electrolyte optimization, material structure engineering and theoretical investigations. To inspire new research directions, this review focuses on the latest advances in cathode materials for aqueous batteries based on the multivalent ions (Zn2+, Mg2+, Ca2+, Al3+), their common challenges, and promising strategies for improvement. In addition, further suggestions for development directions and a comparison of the different AMVIBs are covered.
机译:随着能源消耗的快速增长,可再生能源是一个有前途的解决方案。然而,可再生能源(例如,风,太阳能和潮汐)是由性质不连续和不规则的,这对新一代大规模储能装置带来了新的挑战。与锂离子和铅酸电池相比,使用电解质和多价离子电荷的可充电电池被认为是更合适的候选者,而且由于它们的低成本,易于制造,良好的安全性和环境良好的特征,因此被认为是更合适的候选物。然而,一些大量的挑战阻碍了可充电的多价离子电池(Amvibs)的开发,包括窄稳定的水电化学窗(近似为1.23V),缓慢的离子扩散动力学和电极材料的稳定性问题。为了解决这些挑战,近年来,在电解质优化,材料结构工程和理论调查方面,近年来发展了一系列令人鼓舞的策略。为了激励新的研究方向,本综述重点是基于多价离子(Zn2 +,Mg2 +,Ca2 +,Al3 +),其共同挑战和有前途的改善策略的水电池阴极材料的最新进展。此外,涵盖了对发展方向和不同AMVIB的比较的进一步建议。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第13期|2010445.1-2010445.35|共35页
  • 作者单位

    Univ Coll London UCL Dept Chem Engn Electrochem Innovat Lab EIL London WC1E 7JE England|Univ Coll London UCL Dept Chem Christopher Ingold Lab 20 Gordon St London WC1H 0AJ England;

    Univ Coll London UCL Dept Chem Engn Electrochem Innovat Lab EIL London WC1E 7JE England|Univ Coll London UCL Dept Chem Christopher Ingold Lab 20 Gordon St London WC1H 0AJ England|Univ Lincoln Sch Chem Lincoln LN6 7TS England;

    East China Univ Sci & Technol Sch Mat Sci & Engn Shanghai Engn Res Ctr Hierarch Nanomat Key Lab Ultrafine Mat Minist Educ 130 Meilong Rd Shanghai 200237 Peoples R China;

    Univ Coll London UCL Dept Chem Christopher Ingold Lab 20 Gordon St London WC1H 0AJ England;

    Univ Coll London UCL Dept Chem Engn Electrochem Innovat Lab EIL London WC1E 7JE England|Quad One Faraday Inst Becquerel Ave Harwell Campus London OX11 ORA England;

    Univ Coll London UCL Dept Chem Engn Electrochem Innovat Lab EIL London WC1E 7JE England|Quad One Faraday Inst Becquerel Ave Harwell Campus London OX11 ORA England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    aqueous electrolyte; cathode materials; multivalent ion batteries; structural engineering;

    机译:水性电解质;阴极材料;多价离子电池;结构工程;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号