首页> 外文期刊>Advanced Functional Materials >Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultra low Physiological H_2O_2 Concentration
【24h】

Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultra low Physiological H_2O_2 Concentration

机译:具有超低生理H_2O_2浓度的可逆和敏感pH速度调节的超组装生物催化多孔骨架微电机

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Synthetic nano/micromotors are a burgeoning class of materials with vast promise for applications ranging from environmental remediation to nanomedicine. The motility of these motors is generally controlled by the concentration of accessible fuel, and therefore, engineering speed-regulation mechanisms, particularly using biological triggers, remains a continuing challenge. Here, control over the movement of superassembled porous framework micromotors via a reversible, biological-relevant pH-responsive regulatory mechanism is demonstrated. Succinylated -lactoglobulin and catalase are superassembled in porous framework particles, where the -lactoglobulin is permeable at neutral pH. This permeability allows the fuel (H2O2) to access catalase, leading to autonomous movement of the micromotors. However, at mild acidic pH, succinylated -lactoglobulin undergoes a reversible gelation process, preventing the access of fuel into the micromotors where the catalase resides. To one's knowledge, this study represents the first example of chemically driven motors with rapid, reversible pH-responsive motility. Furthermore, the porous framework significantly enhances the biocatalytic activity of catalase, allowing ultralow H2O2 concentrations to be exploited at physiological conditions. It is envisioned that the simultaneous exploitation of pH and chemical potential of such nanosystems could have potential applications as stimulus-responsive drug delivery vehicles that benefit from the complex biological environment.
机译:合成纳米/微型电动机是一类新兴的材料,具有从环境修复到纳米医学的广泛应用前景。这些电动机的动力通常由可获取燃料的浓度控制,因此,工程速度调节机制,特别是使用生物触发器,仍然是一个持续的挑战。在这里,证明了通过可逆的,与生物有关的pH响应调节机制来控制超级组装的多孔框架微电机的运动。琥珀酰化的-乳球蛋白和过氧化氢酶在多孔骨架颗粒中超组装,其中-乳球蛋白在中性pH下可渗透。这种渗透性允许燃料(H2O2)接触过氧化氢酶,从而导致微电机的自主运动。但是,在弱酸性pH下,琥珀酰化的-乳球蛋白会发生可逆的胶凝过程,从而阻止燃料进入过氧化氢酶所处的微电机中。就本人所知,该研究代表了具有快速,可逆的pH响应运动性的化学驱动马达的第一个示例。此外,多孔骨架显着增强了过氧化氢酶的生物催化活性,从而允许在生理条件下利用超低的H2O2浓度。可以预见,同时利用这种纳米系统的pH和化学势可能具有潜在的应用,例如从复杂的生物环境中受益的刺激响应药物输送工具。

著录项

  • 来源
    《Advanced Functional Materials》 |2019年第18期|1808900.1-1808900.10|共10页
  • 作者单位

    Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia;

    Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England;

    Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, IChEM, Shanghai 200438, Peoples R China;

    Univ Melbourne, Dept Chem & Biomol Engn, Parkville, Vic 3010, Australia;

    Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia|Univ New South Wales, Australian Ctr NanoMed, Sydney, NSW 2052, Australia;

    Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, IChEM, Shanghai 200438, Peoples R China|Qilu Univ Technol, Natl Supercomp Res Ctr Adv Mat, Adv Mat Inst, Shandong Acad Sci, Jinan 250014, Shandong, Peoples R China;

    Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, IChEM, Shanghai 200438, Peoples R China|Qilu Univ Technol, Natl Supercomp Res Ctr Adv Mat, Adv Mat Inst, Shandong Acad Sci, Jinan 250014, Shandong, Peoples R China;

    Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, IChEM, Shanghai 200438, Peoples R China;

    Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia;

    Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada;

    Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia|Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia;

    Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia|Univ New South Wales, Australian Ctr NanoMed, Sydney, NSW 2052, Australia|Qilu Univ Technol, Natl Supercomp Res Ctr Adv Mat, Adv Mat Inst, Shandong Acad Sci, Jinan 250014, Shandong, Peoples R China|Univ New South Wales, Grad Sch Biomed Engn, Sydney, NSW 2052, Australia;

    Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, IChEM, Shanghai 200438, Peoples R China;

    Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, IChEM, Shanghai 200438, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biocatalysis; metal-organic frameworks; micromotors; pH-responsive; self-propulsion;

    机译:生物催化;金属有机骨架;微电机;pH响应;自我推进;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号