首页> 外文期刊>Advanced energy materials >Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells
【24h】

Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

机译:控制富勒烯和其他小分子在太阳能电池中使用的半导体聚合物侧链之间嵌入的因素

获取原文
获取原文并翻译 | 示例
           

摘要

While recent reports have established significant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and small-molecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is sufficient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:non-fullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer–fullerene interactions can exist, and the calculations point to van der Waals interactions as a significant driving force for molecular mixing.
机译:尽管最近的报告已经证实了有机太阳能电池中使用的聚合物:富勒烯混合物具有明显的可混溶性,但实际上对于聚合物和富勒烯为什么混合以及如何控制它们的混合知之甚少。在这里,X射线衍射(XRD),差示扫描量热法(DSC)和分子模拟被用来通过系统地改变聚合物和小分子特性来研究各种聚合物:分子共混物中的混合。已经发现,通过形成双分子晶体可以混合多种聚合物:富勒烯共混物,前提是在聚合物侧链之间有足够的空间容纳富勒烯。尽管在其他研究的聚合物:非富勒烯混合物中,包括共轭和非共轭小分子的共混物,均未形成双分子晶体,但也观察到了聚合物:四氟-四氰基喹二甲烷(F4-TCNQ)双分子晶体。 DSC和分子模拟表明,可以存在强的聚合物-富勒烯相互作用,计算结果表明范德华相互作用是分子混合的重要驱动力。

著录项

  • 来源
    《Advanced energy materials》 |2012年第10期|1-10|共10页
  • 作者单位

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    School of Chemistry Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta GA 30332 USA;

    School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    School of Chemistry Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta GA 30332 USA;

    School of Chemistry Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta GA 30332 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Department of Chemistry Imperial College London London SW7 2AZ UK;

    Department of Chemistry Imperial College London London SW7 2AZ UK;

    School of Chemistry Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta GA 30332 USA;

    Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号