首页> 外文期刊>Advanced energy materials >Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting
【24h】

Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting

机译:纳米抗氧化剂的应用使超稳定的叶绿体能够用于太阳能收集

获取原文
获取原文并翻译 | 示例
           

摘要

The chloroplast contains densely stacked arrays of light-harvesting proteins that harness solar energy with theoretical maximum glucose conversion efficiencies approaching 12%. Few studies have explored isolated chloroplasts as a renewable, abundant, and low cost source for solar energy harvesting. One impediment is that photoactive proteins within the chloroplast become photodamaged due to reactive oxygen species (ROS) generation. In vivo, chloroplasts reduce photodegradation by applying a self-repair cycle that dynamically replaces photodamaged components; outside the cell, ROS-induced photodegradation contributes to limited chloroplast stability. The incorporation of chloroplasts into synthetic, light-harvesting devices will require regenerative ROS scavenging mechanisms to prolong photoactivity. Herein, we study ROS generation within isolated chloroplasts extracted from Spinacia oleracea directly interfaced with nanoparticle antioxidants, including dextran-wrapped nanoceria (dNC) previously demonstrated as a potent ROS scavenger. We quantitatively examine the effect of dNC, along with cerium ions, fullerenol, and DNA-wrapped single-walled carbon nano-tubes (SWCNTs), on the ROS generation of isolated chloroplasts using the oxidative dyes, 2',7'- dichlorodihydrofluorescein diacetate (H_2DCF-DA) and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt (XTT). Electrochemical measurements confirm that chloroplasts processed from free solution can generate power under illumination. We find dNC to be the most effective of these agents for decreasing oxidizing species and superoxide concentrations whilst preserving chloroplast photoactivity at concentrations below 5 μM, offering a promising mechanism for maintaining regenerative chloroplast photoactivity for light-harvesting applications.
机译:叶绿体包含密集堆叠的光收集蛋白质阵列,这些蛋白质利用太阳能,理论上最大的葡萄糖转化效率接近12%。很少有研究探索孤立的叶绿体作为太阳能的可再生,丰富且低成本的来源。一个障碍是叶绿体中的光敏蛋白由于活性氧(ROS)的产生而受到光损伤。在体内,叶绿体通过应用自我修复循环来动态替换光损坏的组件,从而减少光降解。在细胞外,ROS诱导的光降解作用导致有限的叶绿体稳定性。将叶绿体结合到合成的光收集装置中将需要再生的ROS清除机制来延长光活性。在本文中,我们研究了从菠菜中提取的分离叶绿体中的ROS生成,这些叶绿体与纳米颗粒抗氧化剂直接接触,包括以前被证明是有效的ROS清除剂的葡聚糖包裹的纳米氧化铈(dNC)。我们定量研究了dNC以及铈离子,富勒烯醇和DNA包裹的单壁碳纳米管(SWCNT),使用氧化染料2',7'-二氯二氢荧光素二乙酸酯对分离的叶绿体的ROS生成的影响(H_2DCF-DA)和2,3-双(2-甲氧基-4-硝基-5-磺基苯基)-2H-四唑-5-甲酰苯胺钠盐(XTT)。电化学测量结果表明,由游离溶液处理的叶绿体可以在光照下产生能量。我们发现dNC在减少氧化物种和超氧化物的浓度中最有效,同时在低于5μM的浓度下保留叶绿体的光活性,为光收集应用提供了维持再生叶绿体光活性的有前途的机制。

著录项

  • 来源
    《Advanced energy materials》 |2013年第7期|881-893|共13页
  • 作者单位

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA ,Department of Chemical Engineering California Institute of Technology Pasadena, California 91106, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA ,Department of Chemistry Dumlupinar University Kutahya, 43020, Turkey,Department of Chemistry Middle East Technical University 06531 Ankara, Turkey;

    Department of Chemistry Dartmouth College, Hanover New Hampshire 03755, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

    Molecular Pharmacology and Chemistry Program Memorial Sloan-Kettering Cancer Center New York, New York 10065, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号