首页> 外文期刊>Advanced energy materials >Impact of Nanoscale Elemental Distribution in High-Performance Kesterite Solar Cells
【24h】

Impact of Nanoscale Elemental Distribution in High-Performance Kesterite Solar Cells

机译:高性能钾长石太阳能电池中纳米元素分布的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The effort to develop earth-abundant kesterite solar cells has led to an approximate doubling of the power conversion efficiency over the past five years to 12.6%, primarily due to increases in short-circuit current and fill factor; open-circuit voltage has resisted similar change, limiting further efficiency improvement. In the present investigation, Auger nanoprobe spectroscopy, X-ray/ultraviolet photoelectron spectroscopy, and device characterization are used to provide a comprehensive understanding of the role of grain boundaries and interfaces in limiting performance in kesterite-based devices. High photovoltaic performance is found to correlate with grain boundaries that are Cu-depleted and enriched with SnOx. The formation of this bulk-like oxide at grain boundaries with type I band offset provides a unique effective passivation that limits electron-hole recombination. Building on these new insights, photovoltaic device simulations are performed that show optimized electrostatic designs can compensate for bulk defects, allowing efficiencies closer to the theoretical limit.
机译:开发富含地球的钾长石太阳能电池的努力已使过去五年的功率转换效率几乎翻了一番,达到12.6%,这主要是由于短路电流和填充系数的增加;开路电压抵抗了类似的变化,从而限制了效率的进一步提高。在本研究中,俄歇纳米探针光谱,X射线/紫外线光电子能谱和器件表征被用于全面了解晶界和界面在限制基于钾长石的器件性能中的作用。发现高光伏性能与贫铜且富含SnOx的晶界相关。这种具有I型能带偏移的块状氧化物在晶界处的形成提供了独特的有效钝化,从而限制了电子-空穴的复合。在这些新见识的基础上,进行光伏器件仿真,结果表明优化的静电设计可以补偿体积缺陷,从而使效率接近理论极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号