首页> 外文期刊>Advanced energy materials >Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode
【24h】

Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode

机译:Li4Ti5O12纳米片阳极的容量衰减机理

获取原文
获取原文并翻译 | 示例
           

摘要

Zero-strain and long-term stability of nanoscale lithium titanate (LTO) anode materials make possible the fabrication of exceptionally stable lithium ion batteries. But one issue must be considered that of nanostructure-induced relaxation in 2D LTO nanosheets which profoundly modifies their Li storage properties and structural stability. Excessively intercalated Li ions at both 8a and 16c sites trigger nucleation of the relaxed LTO structure in the nearsurface region, which impedes Li-ion diffusion and causes the increasing polarization of LTO nanosheet electrodes. Nuclei of relaxed LTO then undergo isotropic growth along the 3D Li-ion pathways in LTO to completely convert near-surface regions into relaxed LTO. With increasing population of trapped Li ions, the enhanced conductivity due to Ti4+/Ti3+ reduction gradually eliminates the raised polarization. In the meantime, spontaneous electrolyte/LTO reduction to form the solid electrolyte interphase starts playing a major role in capacity loss once the transformation of near-surface region into relaxed LTO becomes saturated. Elucidation of these fundamental intercalation-induced surface structure transformations contribute greatly into the design of highly performing 2D nanoscaled LTO and other electrode materials.
机译:纳米级钛酸锂(LTO)阳极材料的零应变和长期稳定性使制造异常稳定的锂离子电池成为可能。但是,必须考虑一个问题,即二维LTO纳米片中纳米结构引起的弛豫,这将极大地改变其Li的存储特性和结构稳定性。在8a和16c位置上过多插入的Li离子会触发近表面区域中松弛LTO结构的成核,这会阻止Li离子扩散并导致LTO纳米片电极的极化增加。然后,松弛的LTO的核沿着LTO中的3D锂离子路径经历各向同性生长,以将近表面区域完全转换为松弛的LTO。随着捕获的锂离子数量的增加,由于Ti4 + / Ti3 +还原而增强的电导率逐渐消除了极化现象。同时,一旦近表面区域到松弛的LTO的转变达到饱和,自发电解质/ LTO还原以形成固体电解质中间相就开始在容量损失中起主要作用。这些基本的嵌入诱导的表面结构转换的阐明为高性能2D纳米级LTO和其他电极材料的设计做出了巨大贡献。

著录项

  • 来源
    《Advanced energy materials》 |2017年第5期|1601825.1-1601825.10|共10页
  • 作者单位

    McGill Univ, Mat Engn, Montreal, PQ H3A 0C5, Canada;

    McGill Univ, Mat Engn, Montreal, PQ H3A 0C5, Canada|Beijing Univ Chem Technol, Coll Energy, Beijing 100029, Peoples R China;

    Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada;

    Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China;

    Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada;

    McGill Univ, Mat Engn, Montreal, PQ H3A 0C5, Canada;

    Inst Rech Hydroquebec IREQ, Varennes, PQ J3X 1S1, Canada;

    McGill Univ, Mat Engn, Montreal, PQ H3A 0C5, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号