首页> 外文期刊>Advanced energy materials >Fe_2O_3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic LiO_2 Batteries
【24h】

Fe_2O_3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic LiO_2 Batteries

机译:Fe_2O_3纳米粒子种子催化剂增强非质子LiO_2电池深(放电)放电的循环能力

获取原文
获取原文并翻译 | 示例
           

摘要

Although the high energy density of Li-O-2 chemistry is promising for vehicle electrification, the poor stability and parasitic reactions associated with carbon-based cathodes and the insulating nature of discharge products limit their rechargeability and energy density. In this study, a cathode material consisting of alpha-Fe2O3 nanoseeds and carbon nanotubes (CNT) is presented, which achieves excellent cycling stability on deep (dis)charge with high capacity. The initial capacity of Fe2O3/CNT electrode reaches 805 mA h g(-1) (0.7 mA h cm(-2)) at 0.2 mA cm(-2), while maintaining a capacity of 1098 mA h g(-1) (0.95 mA h cm(-2)) after 50 cycles. The operando structural, spectroscopic, and morphological analysis on the evolution of Li2O2 indicates preferential Li2O2 growth on the Fe2O3. The similar d-spacing of the (100) Li2O2 and (104) Fe2O3 planes suggest that the latter epitaxially induces Li2O2 nucleation. This results in larger Li2O2 primary crystallites and smaller secondary particles compared to that deposited on CNT, which enhances the reversibility of the Li2O2 formation and leads to more stable interfaces within the electrode. The mechanistic insights into dual-functional materials that act both as stable host substrates and promote redox reactions in Li-O-2 batteries represent new opportunities for optimizing the discharge product morphology, leading to high cycling stability and coulombic efficiency.
机译:尽管Li-O-2化学的高能量密度有望使车辆电气化,但是与碳基阴极相关的较差的稳定性和寄生反应以及放电产物的绝缘性限制了它们的可充电性和能量密度。在这项研究中,提出了一种由α-Fe2O3纳米种子和碳纳米管(CNT)组成的阴极材料,该材料在高容量深放电时具有出色的循环稳定性。 Fe2O3 / CNT电极的初始容量在0.2 mA cm(-2)时达到805 mA hg(-1)(0.7 mA h cm(-2)),同时保持1098 mA hg(-1)(0.95 mA)的容量h cm(-2))50个循环后。对Li2O2演化的操作结构,光谱和形态分析表明Li2O2在Fe2O3上优先生长。 (100)Li2O2和(104)Fe2O3平面的相似d间距表明后者外延诱导Li2O2成核。与沉积在CNT上的晶体相比,这将导致更大的Li2O2初级晶体和较小的次级颗粒,这增强了Li2O2形成的可逆性,并导致电极内的界面更稳定。对既能充当稳定的基质又能促进Li-O-2电池中氧化还原反应的双功能材料的机械学见解,为优化放电产品形态,带来高循环稳定性和库仑效率提供了新机会。

著录项

  • 来源
    《Advanced energy materials》 |2018年第18期|1703513.1-1703513.9|共9页
  • 作者单位

    Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands;

    Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands;

    Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands;

    Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China;

    Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China;

    Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada;

    Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands;

    Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada;

    Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    aprotic Li-O-2 batteries; deep (dis)charge; epitaxial growth mechanism; Fe2O3 seed catalysts;

    机译:非质子Li-O-2电池;深(放电)放电;外延生长机理;Fe2O3种子催化剂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号