首页> 外文期刊>Advanced energy materials >Metasurface Photoelectrodes for Enhanced Solar Fuel Generation
【24h】

Metasurface Photoelectrodes for Enhanced Solar Fuel Generation

机译:用于增强太阳能燃料的元表面光电子

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Tailoring optical properties in photocatalysts by nanostructuring them can help increase solar light harvesting efficiencies in a wide range of materials. Whereas plasmon resonances are widely employed in metallic catalysts for this purpose, latest advances of nonradiative, dielectric nanophotonics also enable light confinement and enhanced visible light absorption in semiconductors. Here, a design procedure for large-scale nanofabrication of semiconductor photoelectrodes using imprint lithography is developed. Anapole excitations and metasurface lattice resonances are combined to enhance the absorption of the model material, amorphous gallium phosphide (a-GaP), over the visible spectrum. It is shown that cost-effective, high sample throughput is achieved while retaining the precise signature of the engineered photonic states. Photoelectrochemical measurements under hydrogen evolution reaction conditions and sunlight illumination reveal the contributions of the respective resonances and demonstrate an overall photocurrent enhancement of 5.7, compared to a planar film. These results are supported by optical and numerical analysis of single nanodisks and of the upscaled metasurface.
机译:通过纳米结构定制光催化剂中的光学性能,它们可以帮助增加各种材料中的太阳能光线效率。虽然等离子体共振广泛用于金属催化剂,但是为此目的,非接壤的最新进展,介电纳米液相色谱层也能够在半导体中实现光限制和增强的可见光吸收。这里,开发了使用压印光刻的大规模纳米制造的大规模纳米制造的设计过程。组合anapole激发和元表面晶格共振,以增强模型材料的吸收,在可见光谱上的可见光谱。结果表明,实现了成本效益的高样品吞吐量,同时保留了工程化光子状态的精确签名。与平面薄膜相比,光电化反应条件下的光电化学测量和阳光照明揭示了各种共振的贡献,并证明了5.7的总光电流增强。这些结果是通过单纳米多克斯的光学和数值分析和升高的元表面来支持。

著录项

  • 来源
    《Advanced energy materials》 |2021年第46期|2102877.1-2102877.8|共8页
  • 作者单位

    Ludwig Maximilians Univ Munchen Nanoinst Munchen Dept Phys Koniginstr 10 D-80539 Munich Germany;

    Tech Univ Munich Chair Nano & Quantum Sensors Dept Elect & Comp Engn Theresienstr 90 D-80333 Munich Germany;

    Tech Univ Munich Walter Schottky Inst Coulombwall 4 D-85748 Garching Germany|Tech Univ Munich Dept Phys Coulombwall 4 D-85748 Garching Germany;

    Ludwig Maximilians Univ Munchen Nanoinst Munchen Dept Phys Koniginstr 10 D-80539 Munich Germany;

    Ludwig Maximilians Univ Munchen Nanoinst Munchen Dept Phys Koniginstr 10 D-80539 Munich Germany;

    Tech Univ Munich Chair Nano & Quantum Sensors Dept Elect & Comp Engn Theresienstr 90 D-80333 Munich Germany;

    Tech Univ Munich Walter Schottky Inst Coulombwall 4 D-85748 Garching Germany|Tech Univ Munich Dept Phys Coulombwall 4 D-85748 Garching Germany;

    Ludwig Maximilians Univ Munchen Nanoinst Munchen Dept Phys Koniginstr 10 D-80539 Munich Germany|Imperial Coll London Dept Phys London SW7 2AZ England;

    Ludwig Maximilians Univ Munchen Nanoinst Munchen Dept Phys Koniginstr 10 D-80539 Munich Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anapole; gallium phosphide; hydrogen; nanoimprints; semiconductor photocatalysis; surface lattice resonance; water splitting;

    机译:苯甲酸;磷化镓;氢;纳米视网膜;半导体光电催化;表面晶格共振;水分裂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号