首页> 外文期刊>Advanced energy materials >Ion-Conducting Channel Implanted Anode Matrix for All-Solid-State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface
【24h】

Ion-Conducting Channel Implanted Anode Matrix for All-Solid-State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface

机译:具有高速率能力和稳定阳极/固体电解质界面的全固态电池的离子传导通道植入阳极矩阵

获取原文
获取原文并翻译 | 示例
           

摘要

All-solid-state batteries (ASSBs) are expected to be next-generation energy storage systems due to their high energy density and safety. However, their practical use has been limited by a poor rate capability caused by the Li dendrite growth. Under the operation with high current density, the Li migration rate at the interface between anode and solid electrolyte (SE) is faster than the Li replenishing rate by atom diffusion inside of Li, resulting in void formation at the interface between the anode and SE. These voids induce the increase in the localized current density, leading to the growth of Li dendrites. In this study, an ASSBs system is demonstrated with high rate capability by employing lithiated ZnO nanorods into Li. Lithiated ZnO nanorods, which are capable of Li-ion conduction, providing the passage for Li transportation from the Li bulk to the interface between the Li and SE, resulting in an improvement in the replenishing rate. The lithiated ZnO nanorods in Li enable interfacial integrity by suppressing the void formation at the Li/SE interface even under the high current density. ASSBs employing Li with lithiated ZnO nanorods exhibit stable cyclability without short circuit at 0.3 C during 300 cycles and excellent rate capability.
机译:由于其高能量密度和安全性,预计全固态电池(ASSB)预计将成为下一代储能系统。然而,它们的实际使用受到Li Dendrite生长引起的差的速率能力。在具有高电流密度的操作下,阳极和固体电解质(SE)之间的界面处的LI迁移率比LI内的原子扩散速率更快,导致阳极和SE之间的界面处形成空隙。这些空隙诱导局部电流密度的增加,导致Li Dendrites的生长。在该研究中,通过将锂化的ZnO纳米棒与Li采用锂化ZnO纳米棒来证明ASSBS系统。锂化的ZnO纳米棒,其能够通过Li离子传导提供从Li批量到Li和Se之间的界面的通道,导致补充速率的改善。 LI中的锂化ZnO纳米棒通过抑制Li / Se界面的空隙形成,即使在高电流密度下也能够通过抑制空隙形成。用锂化的ZnO纳米棒使用Li的ASSB在300次循环期间没有在0.3℃的短路下表现出稳定的可稳定的可循环性,并且优异的速率能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号