...
首页> 外文期刊>Advanced energy materials >Mesocrystallizing Nanograins for Enhanced Li~+ Storage
【24h】

Mesocrystallizing Nanograins for Enhanced Li~+ Storage

机译:MesoCryStallized纳米预热,用于增强Li〜+储存

获取原文
获取原文并翻译 | 示例

摘要

The morphology and crystallinity of electrode materials have a major effect on their charge carrier storage properties when applied in rechargeable batteries. While nanosizing electrode particles (with larger surface area) and maintaining electrode integrity are both good for performance enhancement, they seem to contradict each other and are challenging to balanced. Herein, electrode particles consisting of numerous nanograins with uniform crystalline orientation are designed to guarantee both high surface area and high structural integrity, allowing the significant improvement of Li+ storage kinetics and performance. Applying this "mesocrystallizing" strategy to an NiCo2O4-based anode, results in various degrees of pseudocapacitance response, the long-term cyclability and rate performance of this material are also significantly enhanced. Impressively, the mesocrystalline NiCo2O4 electrode exhibits a high specific capacity of 1403 mAh g(-1) after 200 cycles at 1.6 A g(-1) (a rate of 1.8 C). The growth mechanism of mesocrystalline materials with different morphologies is identified to be a topotactic structural transition process featuring a gradual edge-to-core corrosion process. This work presents an important synthetic clue to balance the morphology and crystallinity of battery electrode materials for their performance optimization and is expected to inspire future structural design for battery materials beyond the one prototyped here.
机译:当在可充电电池中涂覆时,电极材料的形态和结晶度对它们的电荷载体储存性能具有重要影响。纳米化电极颗粒(具有较大的表面积)和保持电极完整性都适用于性能增强,它们似乎彼此相矛盾,并且挑战平衡。在此,设计具有均匀结晶取向的许多纳米纳米的电极颗粒,以保证高表面积和高结构完整性,从而显着改善Li +储存动力学和性能。将该策略应用于基于Nico2O4的阳极,导致各种伪宽度响应,这种材料的长期可自由性和速率性能也显着提高。令人印象地,在1.6Ag(-1)(速率为1.8℃)的200次循环后,MesoCrystalline Nico2O4电极表现出1403mAhg(-1)的高比容量。鉴定了不同形态学的中晶材料的生长机制是一种拓扑结构过渡过程,具有逐渐沿核心腐蚀过程。这项工作提出了一个重要的合成线索,以平衡电池电极材料的形态和结晶性,以实现其性能优化,预计将激发未来的电池材料结构设计,超出此处的原型的电池材料。

著录项

  • 来源
    《Advanced energy materials》 |2021年第26期|2100503.1-2100503.8|共8页
  • 作者单位

    Henan Normal Univ Sch Chem & Chem Engn Collaborat Innovat Ctr Henan Prov Green Mfg Fine Key Lab Green Chem Media & React Minist Educ Xinxiang 453007 Henan Peoples R China;

    Wenzhou Univ Inst New Mat & Ind Technol Coll Chem & Mat Engn Wenzhou 325035 Peoples R China|Univ Illinois Mech & Ind Engn Chicago IL 60607 USA;

    Henan Normal Univ Sch Chem & Chem Engn Collaborat Innovat Ctr Henan Prov Green Mfg Fine Key Lab Green Chem Media & React Minist Educ Xinxiang 453007 Henan Peoples R China;

    Henan Normal Univ Sch Chem & Chem Engn Collaborat Innovat Ctr Henan Prov Green Mfg Fine Key Lab Green Chem Media & React Minist Educ Xinxiang 453007 Henan Peoples R China;

    Univ Illinois Mech & Ind Engn Chicago IL 60607 USA;

    Henan Normal Univ Sch Chem & Chem Engn Collaborat Innovat Ctr Henan Prov Green Mfg Fine Key Lab Green Chem Media & React Minist Educ Xinxiang 453007 Henan Peoples R China;

    Univ Waterloo Waterloo Inst Sustainable Energy Dept Chem Engn Waterloo Inst Nanotechnol Waterloo ON N2L 3G1 Canada;

    Argonne Natl Lab Chem Sci & Engn Div Lemont IL 60439 USA;

    Argonne Natl Lab Chem Sci & Engn Div Lemont IL 60439 USA;

    Henan Normal Univ Sch Chem & Chem Engn Collaborat Innovat Ctr Henan Prov Green Mfg Fine Key Lab Green Chem Media & React Minist Educ Xinxiang 453007 Henan Peoples R China;

    Henan Normal Univ Sch Chem & Chem Engn Collaborat Innovat Ctr Henan Prov Green Mfg Fine Key Lab Green Chem Media & React Minist Educ Xinxiang 453007 Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Li-ion storage; mesocrystalline; metal oxides; transmission electron microscopy;

    机译:锂离子储存;中晶;金属氧化物;透射电子显微镜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号