首页> 外文期刊>Advanced energy materials >Overcoming Phase-Purity Challenges in Complex MetalOxide Photoelectrodes: A Case Study of CuBi2O4
【24h】

Overcoming Phase-Purity Challenges in Complex MetalOxide Photoelectrodes: A Case Study of CuBi2O4

机译:克服复杂金属中的阶段纯度挑战氧化物光电图:Cubi2O4的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

The widespread application of solar-water-splitting for energy conversion depends on the progress of photoelectrodes that uphold stringent criteria from photoabsorber materials. After investigating almost all possible elemental and binary semiconductors, the search must be expanded to complex materials. Yet, high structural control of these materials will become more challenging with an increasing number of elements. Complex metal-oxides offer unique advantages as photoabsorbers. However, practical fabrication conditions when using glass-based transparent conductive-substrates with low thermal-stability impedes the use of common synthesis routes of high-quality metal-oxide thin-film photoelectrodes. Nevertheless, rapid thermal processing (RTP) enables heating at higher temperatures than the thermal stabilities of the substrates, circumventing this bottleneck. Reported here is an approach to overcome phase-purity challenges in complex metal-oxides, showing the importance of attaining a single-phase multinary compound by exploring large growth parameter spaces, achieved by employing a combinatorial approach to study CuBi2O4, a prime candidate photoabsorber. Pure CuBi2O4 photoelectrodes are synthesized after studying the relationship between the crystal-structures, synthesis conditions, RTP, and properties over a range of thicknesses. Single-phase photoelectrodes exhibit higher fill-factors, photoconversion efficiencies, longer carrier lifetimes, and increased stability than nonpure photoelectrodes. These findings show the impact of combinatorial approaches alongside radiative heating techniques toward discovering highly efficient multinary photoabsorbers.
机译:太阳能转换的太阳能分裂的广泛应用取决于光电极的进展,其秉承自光吸收材料的严格标准。在调查几乎所有可能的元素和二进制半导体之后,必须将搜索扩展到复杂的材料。然而,对这些材料的高结构控制将与越来越多的元素变得更具挑战性。复杂的金属氧化物作为光吸收器提供独特的优势。然而,在具有低热稳定性的基于玻璃基透明导电基板的实际制造条件阻碍了使用高质量金属氧化物薄膜光电子的普通合成路线的使用。然而,快速的热处理(RTP)使得能够在较高温度下加热而不是基材的热稳定性,避免这种瓶颈。这里报道的是一种克服复杂金属氧化物中相纯度挑战的方法,示出了通过探索大型生长参数空间来实现单相多元化合物的重要性,通过采用组合方法来研究Cubi2O4,这是一种候选的候选光吸收。在研究晶体结构,合成条件,RTP之间的关系之后,合成纯Cubi2O4光电系数在厚度范围内的关系。单相光电极表现出更高的填充因子,光电转化效率,较长的载体寿命和比非物质光电电报的稳定性增加。这些发现表明,组合方法与辐射加热技术朝向发现高效的多元光吸收的影响。

著录项

  • 来源
    《Advanced energy materials》 |2021年第11期|2003474.1-2003474.14|共14页
  • 作者单位

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Solar Fuels Hahn Meitner Pl 1 D-14109 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Silicon Photovolta D-12489 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Solar Fuels Hahn Meitner Pl 1 D-14109 Berlin Germany|Tech Univ Berlin Inst Chem Str 17 Juni 124 D-10623 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Solar Fuels Hahn Meitner Pl 1 D-14109 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Dept Struct & Dynam Energy Mat Hahn Meitner Pl 1 D-14109 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Silicon Photovolta D-12489 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Solar Fuels Hahn Meitner Pl 1 D-14109 Berlin Germany;

    Helmholtz Zentrum Berlin Mat & Energie GmbH Inst Solar Fuels Hahn Meitner Pl 1 D-14109 Berlin Germany|Tech Univ Berlin Inst Chem Str 17 Juni 124 D-10623 Berlin Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    complex metal oxides; CuBi2O4; pulsed laser deposition; radiative heating; rapid thermal processing; solar water splitting;

    机译:复合金属氧化物;立方体2O4;脉冲激光沉积;辐射加热;快速热处理;太阳能分裂;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号