...
首页> 外文期刊>Advanced energy materials >3D Printed Supercapacitors toward Trinity Excellence in Kinetics, Energy Density, and Flexibility
【24h】

3D Printed Supercapacitors toward Trinity Excellence in Kinetics, Energy Density, and Flexibility

机译:3D印刷的超级电容器朝着动力学,能源密度和灵活性卓越

获取原文
获取原文并翻译 | 示例
           

摘要

Modern electronics place stringent requirements on power supplies, calling for high energy and power density within restricted footprints. 3D printing allows for customized electrode designs with outstanding loading densities and represents a seemingly promising solution. However, the sluggish mass transport within bulky matrices presents serious issues to charge storage kinetics. Doping engineering in conjunction with 3D printing is used to achieve a state-of-the-art areal capacitance of 11.8 F cm(-2), which is among the best for carbonaceous supercapacitors, results in an electrode heavily loaded at 85.1 mg cm(-2). Simultaneously, an uncompromised kinetic performance rivaling high-rate thin films is delivered, allowing for flash-charging within 3.6 s while keeping 78.1% capacitance. In agreement with theses appealing features, an unprecedented energy density of 0.66 mWh cm(-2) and power density of 1039.8 mW cm(-2) for a symmetrical device are registered. Meanwhile, the printed device is equipped with superb mechanical compliance, a rarely achieved, yet gravely desired attribute for 3D printed energy storage devices. This work suggests that flexible energy storage devices with unimpaired kinetics at extremely large loading densities could be realized, therefore overturning the traditional mindset that such a performance can only be achieved in thin film devices which are, however, incapable of securing a large energy output.
机译:现代电子设备对电源的严格要求,呼吁在限制占地面积内的高能和功率密度。 3D打印允许定制电极设计,具有出色的装载密度,代表了一个看似有前途的解决方案。然而,庞大矩阵内的缓慢群众运输呈现给储存动力学的严重问题。掺杂工程与3D打印结合使用,用于实现11.8f cm(-2)的最先进的面积电容,这是最适合碳质超容器,导致电极在85.1mg cm( -2)。同时,递送了靶向高速薄膜的不妥协的动力学性能,允许在3.6s内闪电充电,同时保持78.1%的电容。在与此吸引人的特征的同意中,注册了一个前所未有的0.66米/2mph(-2)和1039.8 mw cm(-2)的功率密度的能量密度。同时,印刷装置配备有精湛的机械顺应性,很少实现,对于3D印刷能量存储装置很小而不是期望的属性。这项工作表明,可以实现具有极大装载密度的具有未受损动力学的灵活的能量存储装置,因此推翻了这种性能,即这种性能只能在薄膜装置中实现,然而,不能确保大能量输出。

著录项

  • 来源
    《Advanced energy materials》 |2021年第12期|2100020.1-2100020.10|共10页
  • 作者单位

    Sichuan Univ Polymer Res Inst State Key Lab Polymer Mat Engn Chengdu 610065 Peoples R China;

    Sichuan Univ Polymer Res Inst State Key Lab Polymer Mat Engn Chengdu 610065 Peoples R China;

    Sichuan Univ Polymer Res Inst State Key Lab Polymer Mat Engn Chengdu 610065 Peoples R China;

    Sichuan Univ Polymer Res Inst State Key Lab Polymer Mat Engn Chengdu 610065 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D printing; energy densities; flexible electrodes; kinetics; supercapacitors;

    机译:3D打印;能量密度;柔性电极;动力学;超级电容器;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号