...
首页> 外文期刊>Advanced energy materials >Plasmon-Enhanced Charge Separation and Surface Reactions Based on Ag-Loaded Transition-Metal Hydroxide for Photoelectrochemical Water Oxidation
【24h】

Plasmon-Enhanced Charge Separation and Surface Reactions Based on Ag-Loaded Transition-Metal Hydroxide for Photoelectrochemical Water Oxidation

机译:基于可光电化学水氧化的载体过渡 - 金属氢氧化物的等离子体增强电荷分离和表面反应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Coating photoanodes with transition-metal hydroxides (TMH) is a promising approach for improving photoelectrochemical (PEC) water oxidation. However, the present system still suffers from high charge recombination and sluggish surface reactions. Herein, effective charge separation is achieved at the same time as boosting the surface catalytic reaction for PEC water splitting through decoration of plasmon metal (Ag) in a semiconductor/TMH coupling system. The kinetic behavior at the semiconductor/TMH and TMH/electrolyte interfaces is systematically evaluated by employing intensity modulated photocurrent spectroscopy, scanning photoelectrochemical microscopy, and oxygen evolution reaction model. It is found that both charge transfer and surface catalysis dynamics are enhanced through local surface plasmon resonance of Ag nanoparticles. The as-prepared BiVO4/Co(OH)(x)-Ag exhibits remarkable activity (approximate to 4.64 times) in PEC water splitting in comparison with pure BiVO4. Notably, this smart approach can be also applied to other TMH (Ni(OH)(2)), reflecting its universality. This work provides a guiding design method for solar energy conversion with the semiconductor-TMH system.
机译:具有过渡金属氢氧化物(TMH)的涂层光桥是改善光电化学(PEC)水氧化的有希望的方法。然而,本系统仍然存在高电荷重组和缓慢的表面反应。这里,通过在半导体/ TMH耦合系统中的等离子体金属(Ag)的装饰,同时实现有效电荷分离,同时促进了PEC水分解的表面催化反应。通过采用强度调制的光电流光谱,扫描光电化学显微镜和氧气进化反应模型来系统地评估半导体/ TMH和TMH /电解质界面的动力学行为。结果发现,通过Ag纳米颗粒的局部表面等离子体共振增强了电荷转移和表面催化动态。与纯BIVO4相比,AS制备的BIVO4 / CO(OH)(X)(X)(X)(X)(X)-AG表现出佩奇水分裂中的显着活动(约为4.64倍)。值得注意的是,这种智能方法也可以应用于其他TMH(Ni(OH)(2)),反映其普遍性。这项工作为具有半导体TMH系统的太阳能转换提供了指导设计方法。

著录项

  • 来源
    《Advanced energy materials》 |2021年第17期|2100405.1-2100405.8|共8页
  • 作者单位

    Tianjin Univ Dept Chem Sch Sci Tianjin Key Lab Mol Optoelect Tianjin 300072 Peoples R China|Northwest Normal Univ Key Lab Bioelectrochem & Environm Anal Gansu Prov Coll Chem & Chem Engn Lanzhou 730070 Peoples R China;

    Tianjin Univ Dept Chem Sch Sci Tianjin Key Lab Mol Optoelect Tianjin 300072 Peoples R China;

    Tianjin Univ Dept Chem Sch Sci Tianjin Key Lab Mol Optoelect Tianjin 300072 Peoples R China;

    Tianjin Univ Dept Chem Sch Sci Tianjin Key Lab Mol Optoelect Tianjin 300072 Peoples R China;

    Tianjin Univ Dept Chem Sch Sci Tianjin Key Lab Mol Optoelect Tianjin 300072 Peoples R China|Northwest Normal Univ Key Lab Bioelectrochem & Environm Anal Gansu Prov Coll Chem & Chem Engn Lanzhou 730070 Peoples R China;

    Tianjin Univ Dept Chem Sch Sci Tianjin Key Lab Mol Optoelect Tianjin 300072 Peoples R China;

    Northwest Normal Univ Key Lab Bioelectrochem & Environm Anal Gansu Prov Coll Chem & Chem Engn Lanzhou 730070 Peoples R China;

    Northwest Normal Univ Key Lab Bioelectrochem & Environm Anal Gansu Prov Coll Chem & Chem Engn Lanzhou 730070 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    charge separation; photoelectrochemical; surface plasmon resonance; surface reactions; transition#8208; metal hydroxide;

    机译:电荷分离;光电化学;表面等离子体共振;表面反应;过渡 - 金属氢氧化物;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号