首页> 外文期刊>Advanced energy materials >Engineering the Activity and Stability of MOFNanocomposites for Efficient Water Oxidation
【24h】

Engineering the Activity and Stability of MOFNanocomposites for Efficient Water Oxidation

机译:工程为高效水氧化的MoFnanoC复合材料的活性和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Metal-organic frameworks (MOFs) are considered to be promising candidates for electrochemical water splitting. However, most MOFs are characterized by low electronic conductivity limiting their use as bulk materials for anodes and cathodes. Furthermore, the understanding of the critical parameters controlling the activity and stability of MOF electrocatalysts is still insufficient. Herein, a systematic analysis is presented of the key structural parameters controlling the oxygen evolution reaction (OER) performance and stability of a representative family of bimetallic NiFe-MOFs, where the role of the metal cations on the accessible active sites and intrinsic activity can be investigated independently from the crystal structure. The models and in-depth structural and morphological characterizations reveal a hierarchy of properties affecting the OER activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency. Optimization of these properties and addition of a conductive support substrate leads to efficient MOF-nanocomposite electrocatalysts achieving a low overpotential of 258 mV at a current density of 10 mA cm(-2) with a small Tafel slope of 49 mV dec(-1) and excellent stability for more than 32 h of continuous OER in alkaline medium.
机译:金属有机框架(MOF)被认为是电化学水分裂的有希望的候选者。然而,大多数MOF的特征在于,低电子电导率限制它们作为阳极材料和阴极的散装材料。此外,理解控制MOF电催化剂的活性和稳定性的关键参数仍然不足。在此提出了一种控制氧气进化反应(OER)性能和代表性的Bimetallic Nife-Mof的稳定性的关键结构参数的系统分析,其中金属阳离子对可接受的活性位点和内在活动的作用可以是独立于晶体结构调查。模型和深入的结构和形态学特征揭示了影响OER活动的属性层次,并且在电荷转移效率中发挥重要作用的内在活动。这些性质的优化和导电支撑基材的添加导致高效的MOF - 纳米复合电气催化剂,其在10 mA cm(-2)的电流密度下实现258 mV的低过电位,小Tafel斜率为49 mV Dec(-1)在碱性介质中的32小时超过32小时的优异稳定性。

著录项

  • 来源
    《Advanced energy materials》 |2021年第16期|2003759.1-2003759.8|共8页
  • 作者单位

    Univ New South Wales Fac Sci Sch Chem Sydney NSW 2052 Australia;

    Univ Sydney Fac Engn Nanotechnol Res Lab Sydney NSW 2006 Australia|Australian Natl Univ Coll Sci Nanotechnol Res Lab Res Sch Chem Canberra ACT 2601 Australia;

    Zhengzhou Univ Engn Res Ctr Adv Funct Mat Mfg Minist Educ Zhengzhou 450001 Peoples R China;

    Univ Sydney Sch Chem Lab Adv Catalysis Sustainabil Sydney NSW 2006 Australia|RMIT Univ Sch Sci Ctr Adv Mat & Ind Chem CAMIC 124 La Trobe St Melbourne Vic 3000 Australia;

    Univ New South Wales Fac Sci Sch Chem Sydney NSW 2052 Australia;

    Univ New South Wales Fac Sci Sch Chem Sydney NSW 2052 Australia;

    Univ Sydney Australian Ctr Microscopy & Microanal Sydney NSW 2006 Australia;

    Univ New South Wales Fac Sci Sch Chem Sydney NSW 2052 Australia;

    Zhengzhou Univ Sch Ecol & Environm Zhengzhou 450001 Peoples R China;

    Univ Sydney Fac Engn Nanotechnol Res Lab Sydney NSW 2006 Australia|Australian Natl Univ Coll Sci Nanotechnol Res Lab Res Sch Chem Canberra ACT 2601 Australia;

    Univ New South Wales Fac Sci Sch Chem Sydney NSW 2052 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    graphene; MOF grains; nanocomposites; ultrafine structure; water oxidation;

    机译:石墨烯;MOF晶粒;纳米复合材料;超细结构;水氧化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号