首页> 外文期刊>Advanced energy materials >Metal–Organic Framework-Derived Anode and Polyaniline Chain Networked Cathode with Mesoporous and Conductive Pathways for High Energy Density, Ultrafast Rechargeable, and Long-Life Hybrid Capacito
【24h】

Metal–Organic Framework-Derived Anode and Polyaniline Chain Networked Cathode with Mesoporous and Conductive Pathways for High Energy Density, Ultrafast Rechargeable, and Long-Life Hybrid Capacito

机译:金属有机骨架衍生的阳极和聚苯胺链网络阴极,具有中孔和导电通路,用于高能量密度,超快可充电和长寿命混合电容

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid lithium-ion energy storage devices are promising for future applications, but their anodes and cathodes still have structural limitations, for example, accommodating rich cationic/anionic reactions, rapid charge movement, and long cycle life. Herein, high-capacity/high-rate anode and cathode structures are developed to overcome these challenges. Molybdenum oxide (MoO2)-implanted carbon frameworks making conductive carbon bonds with reduced graphene oxide (rGO) shells are developed as anode structures by forming mesoporous channels for fast lithium-ion transport, carbon-rGO pathways for facile electron conduction, and ultrafine MoO2 units for high capacity. The operando X-ray diffraction and kinetics analyses reveal that lithium-ion insertion and extraction occur via capacitive and diffusion-controlled reactions. Also, polyaniline (PANI) chains are elongated on rGO sheets through in situ polymerization to form crosslinked polyaniline chain-integrated rGO as cathode structures. These display multiporosity for rapid anion transport, N-doping sites for high capacity, and pi-pi bonding between PANI and rGO for electron conduction and cycle stability. Moreover, hybrid capacitors configured by this anode and cathode allow for the exploitation of battery-type and pseudocapacitive reactions, as demonstrated by their extremely high energy density (up to 242 Wh kg(-1)), ultrafast chargeable power density (up to 28 750 W kg(-1)), and long-life stability over 10 000 cycles.
机译:混合锂离子能量存储装置对未来的应用是有前途的,但它们的阳极和阴极仍然具有结构限制,例如,适应富阳离子/阴离子反应,快速充电运动和长循环寿命。这里,开发出高容量/高速阳极和阴极结构以克服这些挑战。通过形成用于快速锂离子输送的介孔通道,用于容易电子传导的碳 - rgo途径和超细Moo2单位,通过形成辅助通道,为阳极结构开发为阳极结构而产生导电碳键(RGO)壳的氧化钼(MOO2)氧化碳框架作为阳极结构。高容量。 Operando X射线衍射和动力学分析揭示了锂离子插入和提取通过电容和扩散控制的反应发生。此外,聚苯胺(PANI)链在RGO片上通过原位聚合伸长,形成交联的聚苯胺链集成的RGO作为阴极结构。这些显示多程度对于快速阴离子输送,高容量的N掺杂位点,以及PANI和RGO之间的PI-PI键合,用于电子传导和循环稳定性。此外,由该阳极和阴极构成的混合电容器允许利用电池型和假致反应的开采,如其极高的能量密度所证明的(高达242WH(-1)),超快电力密度(高达28 750 W kg(-1)),长寿命稳定超过10 000周期。

著录项

  • 来源
    《Advanced energy materials》 |2020年第48期|2001851.1-2001851.9|共9页
  • 作者单位

    Korea Adv Inst Sci & Technol KAIST NanoCentury Inst Dept Mat Sci & Engn MSE 291 Daehak Ro Daejeon 34141 South Korea;

    Korea Adv Inst Sci & Technol KAIST NanoCentury Inst Dept Mat Sci & Engn MSE 291 Daehak Ro Daejeon 34141 South Korea;

    Korea Adv Inst Sci & Technol KAIST NanoCentury Inst Dept Mat Sci & Engn MSE 291 Daehak Ro Daejeon 34141 South Korea|Korea Adv Inst Sci & Technol KAIST Grad Sch Energy Environm Water & Sustainabil EEWS 291 Daehak Ro Daejeon 34141 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    high-performance hybrid capacitors; hybrid capacitors; MOF derived-anode; pseudocapacitive conductive cathodes;

    机译:高性能混合电容器;混合电容器;MOF衍生阳极;伪电容导电阴极;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号