首页> 外文期刊>Advanced energy materials >Facile Synthesis of a 3D Nanoarchitectured Li_4Ti_5O_(12) Electrode for Ultrafast Energy Storage
【24h】

Facile Synthesis of a 3D Nanoarchitectured Li_4Ti_5O_(12) Electrode for Ultrafast Energy Storage

机译:适用于超快储能的3D纳米建筑Li_4Ti_5O_(12)电极的合成

获取原文
获取原文并翻译 | 示例
           

摘要

Despite enormous efforts devoted to the development of high-performance batteries, the obtainable energy and power density, durability, and affordability of the existing batteries are still inadequate for many applications. Here, a self-standing nanostructured electrode with ultrafast cycling capability is reported by in situ tailoring Li4Ti5O12 nanocrystals into a 3D carbon current collector (derived from filter paper) through a facile wet chemical process involving adsorption of titanium source, boiling treatment, and subsequent chemical lithiation. This 3D architectural electrode is charged/discharged to approximate to 60% of the theoretical capacity of Li4Ti5O12 in approximate to 21 s at 100 C rate (17 500 mA g(-1) ), which also shows stable cycling performance for 1000 cycles at a cycling rate of 50 C. Additionally, modified 3D carbon current collector with much smaller pores and finer fiber diameters are further used, which significantly improve the specific capacity based on the weight of the entire electrode. These novel electrodes are promising for high-power applications such as electric vehicles and smart grids. This unique electrode architecture also simplifies the electrode fabrication process and significantly enhances current collection efficiency (especially at high rate). Further, the conceptual electrode design is applicable to other oxide electrode materials for high-performance batteries, fuel cells, and supercapacitors.
机译:尽管专注于开发高性能电池的巨大努力,但对于许多应用,可获得的能量和功率密度,耐用性和可负担性仍然不足。这里,通过涉及吸附钛源,沸腾处理和随后的化学物质,原位纵向Li4Ti5O12纳米晶体以超快循环能力的自静量纳米结构,以超快循环能力报告为3D碳电流收集器(从滤纸衍生自滤纸)。锂化。将该3D架构电极充电/放电,以近似为100c速率的Li4Ti5O12的理论容量的60%(17 500 mA g(-1)),这也显示出1000周期的稳定循环性能。循环率为50℃。另外,进一步使用了改进的3D碳电流收集器,具有更小的孔和更细的纤维直径,这显着提高了基于整个电极的重量的具体容量。这些新颖的电极对高功率应用(例如电动车辆和智能电网)很有前途。这种独特的电极架构还简化了电极制造工艺,并显着提高了电流收集效率(特别是高速率)。此外,概念电极设计适用于用于高性能电池,燃料电池和超级电容器的其他氧化物电极材料。

著录项

  • 来源
    《Advanced energy materials》 |2016年第4期|1500924.1-1500924.11|共11页
  • 作者单位

    Nanjing Tech Univ State Key Lab Mat Oriented Chem Engn Nanjing 210009 Jiangsu Peoples R China|Nanjing Tech Univ Coll Chem & Chem Engn Nanjing 210009 Jiangsu Peoples R China;

    Nanjing Tech Univ State Key Lab Mat Oriented Chem Engn Nanjing 210009 Jiangsu Peoples R China|Nanjing Tech Univ Coll Chem & Chem Engn Nanjing 210009 Jiangsu Peoples R China;

    Nanjing Tech Univ State Key Lab Mat Oriented Chem Engn Nanjing 210009 Jiangsu Peoples R China|Nanjing Tech Univ Coll Chem & Chem Engn Nanjing 210009 Jiangsu Peoples R China;

    Georgia Inst Technol Sch Mat Sci & Engn Ctr Innovat Fuel Cell & Battery Technol Atlanta GA 30332 USA;

    Nanjing Tech Univ State Key Lab Mat Oriented Chem Engn Nanjing 210009 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D current collector; binder-free; lithium-ion batteries; lithium titanate; nanocrystals;

    机译:3D电流收集器;无粘合剂;锂离子电池;钛酸锂;纳米晶体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号