...
首页> 外文期刊>Advanced energy materials >Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion
【24h】

Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion

机译:硅纳米组嵌入式石墨上的鲁棒间距用于抑制不期望的体积膨胀

获取原文
获取原文并翻译 | 示例

摘要

A significant volume expansion exhibited by high-capacity active materials upon lithiation has hindered their application as Li-ion battery anode materials. Although tremendous progress has been made in the development of coating methods that improve the stability of high-capacity active materials, suitable coating sources that are both strong and economical to use are yet to be discovered. Pitch is reported here as a promising coating source for high-capacity anodes owing to the high mechanical strength and low-cost process. Using in situ transmission electron microscopy, it is found that pitch can withstand the severe volume expansion that occurs upon Si lithiation owing to its high mechanical strength, originating from the long-range graphitic ordering. Notably, pitch-coated silicon nanolayer-embedded graphite (SG) exhibits superior capacity retention (81.9%) compared to that of acetylene-coated SG (66%) over 200 cycles in a full-cell by effectively mitigating volume expansion, even under industrial electrode density conditions (1.6 g cc(-1)). Thus, this work presents new possibilities for the development of high-capacity anodes for industrial implementation.
机译:在锂化时由高容量活性材料表现出的显着膨胀已经阻碍了它们作为锂离子电池阳极材料的应用。虽然在涂料方法的开发方面取得了巨大进展,但提高了高容量活性材料的稳定性,尚未发现强大且经济的合适的涂层来源。这里报告俯仰作为由于高机械强度和低成本过程的高容量阳极的承诺涂层源。使用原位透射电子显微镜检查,发现俯仰可以承受由于其高机械强度而在Si锂化时发生的严重体积膨胀,来自远程石墨排序。值得注意的是,与全细胞中的乙炔涂覆的SG(66%)通过有效减轻体积膨胀,即使在工业下,螺旋涂覆的硅纳米组嵌入的石墨(SG)也表现出优异的容量保持(81.9%)。电极密度条件(1.6g CC(-1))。因此,这项工作为工业实施的高容量阳极发展提供了新的可能性。

著录项

  • 来源
    《Advanced energy materials 》 |2019年第4期| 1803121.1-1803121.9| 共9页
  • 作者单位

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea|Korea Adv Inst Sci & Technol Dept Mat Sci & Engn Daejeon 34141 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Korea Adv Inst Sci & Technol Dept Mat Sci & Engn Daejeon 34141 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Korea Adv Inst Sci & Technol Dept Mat Sci & Engn Daejeon 34141 South Korea;

    Pukyong Natl Univ Dept Met Engn Busan 48547 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

    Ulsan Natl Inst Sci & Technol Sch Energy & Chem Engn Dept Energy Engn Ulsan 44919 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lithium ion batteries; pitch; Si anodes; solid electrolyte interphase; volume expansion;

    机译:锂离子电池;沥青;Si阳极;固体电解质相互作用;体积膨胀;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号