...
首页> 外文期刊>Advanced energy materials >Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithium-Rich Layered Oxides
【24h】

Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithium-Rich Layered Oxides

机译:消除过渡金属迁移和阴离子氧化还原,以了解富锂层状氧化物的电压滞后

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lithium-rich layered oxides are promising candidate cathode materials for the Li-ion batteries with energy densities above 300 Wh kg(-1). However, issues such as the voltage hysteresis and decay hinder their commercial applications. Due to the entanglement of the transition metal (TM) migration and the anionic redox upon lithium extraction at high potentials, it is difficult to recognize the origin of these issues in conventional Li-rich layered oxides. Herein, Li2MoO3 is chosen since prototype material to uncover the reason for the voltage hysteresis as the TM migration and anionic redox can be eliminated below 3.6 V versus Li+/Li in this material. On the basis of comprehensive investigations by neutron powder diffraction, scanning transmission electron microscopy, synchrotron X-ray absorption spectroscopy, and density functional theory calculations, it is clarified that the ordering-disordering transformation of the Mo3O13 clusters induced by the intralayer Mo migration is responsible for the voltage hysteresis in the first cycle; the hysteresis can take place even without the anionic redox or the interlayer Mo migration. A similar suggestion is drawn for its iso-structured Li2RuO3 (C2/c). These findings are useful for understanding of the voltage hysteresis in other complicated Li-rich layered oxides.
机译:富锂层状氧化物是有希望的能量密度超过300 Wh kg(-1)的锂离子电池的候选阴极材料。然而,诸如电压滞后和衰减之类的问题阻碍了它们的商业应用。由于在高电势下锂提取时过渡金属(TM)迁移和阴离子氧化还原发生纠缠,因此难以识别传统富Li层状氧化物中这些问题的根源。在这里,选择Li2MoO3是因为原型材料揭示了电压滞后的原因,因为与该材料中的Li + / Li相比,TM迁移和阴离子氧化还原可以在3.6 V以下消除。在中子粉末衍射,扫描透射电子显微镜,同步加速器X射线吸收光谱和密度泛函理论计算的综合研究的基础上,阐明了由层内Mo迁移引起的Mo3O13团簇的有序无序转变是有原因的。第一周期的电压滞后即使没有阴离子氧化还原或夹层Mo迁移,也会发生磁滞现象。对于其同构的Li2RuO3(C2 / c)也提出了类似的建议。这些发现对于理解其他复杂的富锂层状氧化物中的电压滞后很有用。

著录项

  • 来源
    《Advanced energy materials》 |2020年第8期|1903634.1-91903634.9|共9页
  • 作者单位

    Chinese Acad Sci Inst Phys Beijing Key Lab New Energy Mat & Devices Key Lab Renewable Energy Beijing 100190 Peoples R China|Univ Chinese Acad Sci Coll Mat Sci & Optoelect Technol Beijing 101408 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Key Lab New Energy Mat & Devices Key Lab Renewable Energy Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Phys Lab Adv Mat & Electron Microscopy Beijing 100190 Peoples R China;

    Natl Synchrotron Radiat Res Ctr Hsinchu 30076 Taiwan;

    Synchrotron Soleil LOrme Merisiers St Aubin F-91192 Gif Sur Yvette France|Liaocheng Univ Sch Phys Sci & Informat Technol Liaocheng 252059 Peoples R China;

    Univ Wollongong Inst Superconducting & Elect Mat Wollongong NSW 2500 Australia;

    Univ Chinese Acad Sci Sch Phys Sci Beijing 100190 Peoples R China|Chinese Acad Sci Inst Phys Lab Adv Mat & Electron Microscopy Beijing 100190 Peoples R China;

    Max Planck Inst Chem Phys Solids D-01187 Dresden Germany;

    Chinese Acad Sci Inst Phys Beijing Key Lab New Energy Mat & Devices Key Lab Renewable Energy Beijing 100190 Peoples R China|Univ Chinese Acad Sci Coll Mat Sci & Optoelect Technol Beijing 101408 Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Li2MoO3; lithium-rich materials; voltage decay; voltage hysteresis;

    机译:Li 2 MoO 3;富含锂的材料;电压衰减电压迟滞;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号