首页> 外文期刊>Advanced energy materials >Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion
【24h】

Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion

机译:分层卵黄壳纳米胶囊中的界面电荷场可实现高效的固定化和多硫化物转化的催化作用

获取原文
获取原文并翻译 | 示例
           

摘要

Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high-performance lithium-sulfur (Li-S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk-shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet-grafted hollow N-doped porous carbon capsules (Fe2O3@N-PC/Mn3O4-S). When applied as a cathode for Li-S batteries, the as-prepared Fe2O3@N-PC/Mn3O4-S can deliver capacities as high as 1122 mAh g(-1) after 200 cycles at 0.5 C and 639 mAh g(-1) after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm(-2), the cathode can still maintain a high areal specific capacity of 5.08 mAh cm(-2) with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen-vacancy-induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts.
机译:抑制多硫化锂的穿梭效应并加快其转化动力学对于开发高性能锂硫(Li-S)电池至关重要。在这里,提出了一种改进的模板方法来合成坚固的蛋黄壳硫主体,该主体是通过将分散的Fe2O3纳米粒子包裹在Mn3O4纳米片接枝的中空N掺杂多孔碳胶囊(Fe2O3 @ N-PC / Mn3O4-S)中而制成的。当用作Li-S电池的阴极时,所制备的Fe2O3 @ N-PC / Mn3O4-S在0.5 C和639 mAh g(-1)下经过200次循环后可以提供高达1122 mAh g(-1)的容量)分别在10 C下经过1500个循环。值得注意的是,即使将区域硫负载增加到5.1 mg cm(-2),阴极仍可以维持5.08 mAh cm(-2)的高区域比容量,而在100个循环中,每个循环的衰落率仅为0.076%在0.1 C时。通过电子全息图和电子能量损失光谱的进一步组合分析,显示出杰出的性能主要归因于氧空位引起的界面电荷场,该场固定并催化了多硫化锂的转化,从而确保了低极化,舰队氧化还原反应动力学和硫的充分利用。这些新发现可能揭示了电化学性能对硫主体异质结构的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号