...
首页> 外文期刊>Advanced energy materials >Diffusion Limitation of Lithium Metal and Li-Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure
【24h】

Diffusion Limitation of Lithium Metal and Li-Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure

机译:锂金属和锂镁合金阳极在LLZO型固体电解质上的扩散极限随温度和压力的变化

获取原文
获取原文并翻译 | 示例

摘要

The morphological instability of the lithium metal anode is the key factor restricting the rate capability of lithium metal solid state batteries. During lithium stripping, pore formation takes place at the interface due to the slow diffusion kinetics of vacancies in the lithium metal. The resulting current focusing increases the internal cell resistance and promotes fast lithium penetration. In this work, galvanostatic electrochemical impedance spectroscopy is used to investigate operando the morphological changes at the interface by analysis of the interface capacitances. Therewith, the effect of temperature, stack pressure, and chemical modification is investigated. The work demonstrates that introducing 10 at% Mg into the lithium metal anode can effectively prevent contact loss. Nevertheless, a fundamental kinetic limitation is also observed for the Li-rich alloy, namely the diffusion controlled decrease of the lithium metal concentration at the interface. An analytical diffusion model is used to describe the temperature-dependent delithiation kinetics of Li-Mg alloys. Overall, it is shown that different electrode design concepts should be considered. Mg alloying can increase lithium utilization, when no external pressure is applied while pure lithium metal is superior for setups that allow stack pressures in the MPa range.
机译:锂金属阳极的形态不稳定性是限制锂金属固态电池速率能力的关键因素。在锂汽提期间,由于空位在锂金属中的缓慢扩散动力学,在界面处发生孔形成。产生的电流聚焦增加了电池的内部电阻,并促进了快速的锂渗透。在这项工作中,恒电流电化学阻抗谱用于通过分析界面电容来研究界面处的形态变化。因此,研究了温度,烟囱压力和化学改性的影响。这项工作表明,将10 at%Mg引入到锂金属阳极中可以有效防止接触损耗。然而,对于富锂合金也观察到基本的动力学限制,即界面处锂金属浓度的扩散控制降低。解析扩散模型用于描述Li-Mg合金随温度变化的脱锂动力学。总的来说,表明应考虑不同的电极设计概念。当不施加外部压力时,镁合金化可以提高锂的利用率,而纯锂金属对于允许烟囱压力在MPa范围内的设置而言则更为出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号