...
首页> 外文期刊>Advanced energy materials >An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes
【24h】

An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes

机译:互连通道样框架作为锂金属复合阳极的主体

获取原文
获取原文并翻译 | 示例

摘要

Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high-power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel-like structure of a carbonized eggplant (EP) as a stable "host" for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as-formed EP-LiF composite anode maintains approximate to 90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP-LiF offers much improved symmetric cell and full-cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light-weight high-performance current collector, achieving an average Coulombic efficiency approximate to 99.1% in ether-based electrolytes with 2.2 mAh cm(-2) cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next-generation high-energy density batteries.
机译:长期以来一直依靠锂(Li)金属阳极来满足对高能量,高功率可充电电池系统不断增长的需求,但它们一直受到镀层失控,固体电解质中间相(SEI)形成不稳定以及由此导致的库仑效率低的困扰。 。在商业水平的电流密度和面积容量测试条件下,这些问题甚至加剧。在这项工作中,利用了碳化茄子(EP)的通道状结构作为锂金属熔体注入的稳定“主体”。通过对氟化锂(LiF)进行进一步的相间改性,所形成的EP-LiF复合阳极可保持约90%的锂金属理论容量,并可以成功抑制循环过程中枝晶的生长和体积波动。 EP-LiF提供了大大改善的对称电池和全电池循环性能,在各种面积容量和高倍率容量下具有更低且更稳定的超电势。此外,碳化的EP用作轻量级高性能集电器,在2.2 mAh cm(-2)循环面积容量的醚基电解质中,平均库仑效率约为99.1%。碳化EP的自然结构将激发锂阳极和硫阴极电极框架的进一步人工设计,为下一代高能量密度电池提供有希望的候选者。

著录项

  • 来源
    《Advanced energy materials 》 |2019年第7期| 1802720.1-1802720.8| 共8页
  • 作者单位

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA|Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coulombic efficiency; host; lithium metal anodes; SEI;

    机译:库仑效率;主体;锂金属阳极;SEI;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号