...
首页> 外文期刊>Advanced energy materials >Ion-Sieving Carbon Nanoshells for Deeply Rechargeable Zn-Based Aqueous Batteries
【24h】

Ion-Sieving Carbon Nanoshells for Deeply Rechargeable Zn-Based Aqueous Batteries

机译:离子可过滤碳纳米壳,用于可深度充电的锌基水性电池

获取原文
获取原文并翻译 | 示例

摘要

As an alternative to lithium-ion batteries, Zn-based aqueous batteries feature nonflammable electrolytes, high theoretical energy density, and abundant materials. However, a deeply rechargeable Zn anode in lean electrolyte configuration is still lacking. Different from the solid-to-solid reaction mechanism in lithium-ion batteries, Zn anodes in alkaline electrolytes go through a solid-solute-solid mechanism (Zn-Zn(OH)(4)(2-)-ZnO), which introduces two problems. First, discharge product ZnO on the surface prevents further reaction of Zn underneath, which leads to low utilization of active material and poor rechargeability. Second, soluble intermediates change Zn anode morphology over cycling. In this work, an ion-sieving carbon nanoshell coated ZnO nanoparticle anode is reported, synthesized in a scalable way with controllable shell thickness, to solve the problems of passivation and dissolution simultaneously. The nanosized ZnO prevents passivation, while microporous carbon shell slows down Zn species dissolution. Under extremely harsh testing conditions (closed cell, lean electrolyte, no ZnO saturation), this Zn anode shows significantly improved performance compared to Zn foil and bare ZnO nanoparticles. The deeply rechargeable Zn anode reported is an important step toward practical high-energy rechargeable aqueous batteries (e.g., Zn-air batteries). And the ion-sieving nanoshell concept demonstrated is potentially beneficial to other electrodes such as sulfur cathode for Li-S batteries.
机译:锌基水性电池可替代锂离子电池,具有不可燃的电解质,高理论能量密度和丰富的材料。然而,仍然缺乏贫电解质构造的可深度充电的Zn阳极。与锂离子电池中的固-固反应机理不同,碱性电解质中的Zn阳极经历固-固-固机理(Zn-Zn(OH)(4)(2-)-ZnO),两个问题。首先,表面上的放电产物ZnO阻止了Zn在下面的进一步反应,这导致活性材料利用率低和可充电性差。其次,可溶性中间体会在循环中改变Zn阳极的形态。在这项工作中,报道了一种以离子筛分碳纳米壳包覆的ZnO纳米颗粒阳极,该壳以可扩展的方式合成且壳厚度可控,以同时解决钝化和溶解问题。纳米尺寸的ZnO可防止钝化,而微孔碳壳可减缓Zn的溶解。在极端苛刻的测试条件下(密闭电池,稀薄的电解质,没有ZnO饱和),与Zn箔和ZnO裸露的纳米颗粒相比,该Zn阳极的性能大大提高。报道的可深度充电的Zn阳极是迈向实用的高能可充电水性电池(例如Zn-空气电池)的重要一步。所展示的离子筛选纳米壳概念可能对其他电极(例如用于Li-S电池的硫阴极)有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号