首页> 外文期刊>Acta Mechanica >Wave propagation in inhomogeneous layered media: solution of forward and inverse problems
【24h】

Wave propagation in inhomogeneous layered media: solution of forward and inverse problems

机译:波在非均匀分层介质中的传播:正向和反向问题的解决方案

获取原文
获取原文并翻译 | 示例
           

摘要

Wave propagation in anisotropic inhomogeneous layered media due to high frequency impact loading is studied using a new Spectral Layer Element (SLE). The element can model functionally graded materials (FGM), where the material property variation is assumed to follow an exponential function. The element is exact for a single parameter model which describes both moduli and density variation. This novel element is formulated using the method of partial wave technique (PWT) in conjunction with linear algebraic methodology. The matrix structure of finite element (FE) formulation is retained, which substantially simplifies the modeling of a multi-layered structure. The developed SLE has an exact dynamic stiffness matrix as it uses the exact solution of the governing elastodynamic equation in the frequency domain as its interpolation function. The mass distribution is modeled exactly, and, as a result, the element gives the exact frequency response of each layer. Hence, one element may be as large as one complete layer which results in a system size being very small compared to conventional FE systems. The Fast-Fourier Transform (FFT) and Fourier series are used for the inversion to the time/space domain. The formulated element is further used to study the stress distribution in multi-layered media. As a natural application, Lamb wave propagation in an inhomogeneous plate is studied and the time domain description is obtained. Further, the advantage of the spectral formulation in the solution of inverse problems, namely the force identification and system identification is investigated. Constrained nonlinear optimization technique is used for the material property identification, whereas the transfer function approach is taken for the impact force identification.
机译:使用新的光谱层元素(SLE)研究了由于高频冲击载荷而在各向异性非均匀分层介质中的波传播。元素可以对功能梯度材料(FGM)进行建模,其中假定材料特性变化遵循指数函数。该元素对于描述模量和密度变化的单参数模型是精确的。使用分波技术(PWT)与线性代数方法相结合来配制此新颖元素。保留了有限元(FE)公式的矩阵结构,这大大简化了多层结构的建模。所开发的SLE具有精确的动态刚度矩阵,因为它使用了频域中控制弹性动力学方程的精确解作为其插值函数。精确地模拟了质量分布,因此,该元素给出了每一层的精确频率响应。因此,一个元件可以与一个完整的层一样大,这导致系统尺寸与传统的FE系统相比非常小。快速傅立叶变换(FFT)和傅立叶级数用于逆时空域。所配制的元素还用于研究多层介质中的应力分布。作为自然应用,研究了兰姆波在不均匀板中的传播并获得了时域描述。此外,研究了频谱公式在解决反问题中的优势,即力识别和系统识别。约束非线性优化技术用于材料性能识别,而传递函数法用于冲击力识别。

著录项

  • 来源
    《Acta Mechanica》 |2004年第4期|153-185|共33页
  • 作者单位

    Department of Aerospace Engineering Indian Institute of Sceince;

    Department of Aerospace Engineering Indian Institute of Sceince;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号