...
首页> 外文期刊>ACM transactions on sensor networks >Joint k-Coverage and Data Gathering in Sparsely Deployed Sensor Networks - Impact of Purposeful Mobility and Heterogeneity
【24h】

Joint k-Coverage and Data Gathering in Sparsely Deployed Sensor Networks - Impact of Purposeful Mobility and Heterogeneity

机译:稀疏部署的传感器网络中的联合k覆盖和数据收集-有目的的移动性和异构性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Coverage is one of the fundamental concepts in the design of wireless sensor networks (WSNs) in the sense that the monitoring quality of a phenomenon depends on the quality of service provided by the sensors in terms of how well a field of interest is covered. It enables the sensors to detect any event that may occur in the field, thus, meeting the application-specific requirements. Several applications require k-coverage, where each point in the field is covered by at least k sensors, which helps increase data availability to ensure better data reliability. Achieving k-coverage of a field of interest becomes a more challenging issue in sparsely deployed WSNs. Though the problem of coverage in WSNs has been well studied in the literature, only little research efforts have been devoted to the case of sparsely deployed WSNs. Thus, in this article, we investigate the problem of k-coverage in sparse WSNs using static and mobile sensors, which do not necessarily have the same communication range, sensing range, and energy supply. Precisely, we propose an optimized, generalized framework for k-coverage in sparsely deployed WSNs, called k-SCHEMES, which exploits sensor heterogeneity and mobility. First, we characterize k-coverage using heterogeneous sensors based on Helly's Theorem. Second, we introduce our energy-efficient four-tier architecture to achieve mobile k-coverage of a region of interest in a field. Third, on top of this architecture, we suggest two data-gathering protocols, called direct data-gathering and forwarding chain-based data-gathering, using the concept of mobile proxy sink. We found that the second data-gathering protocol outperforms the first one. For energy-efficient forwarding, we compute the minimum transmission distance between any pair of consecutive mobile proxy sinks forming the forwarding chain as well as the corresponding optimum number of mobile proxy sinks in this chain. We corroborate our analysis with several simulation results.
机译:覆盖范围是无线传感器网络(WSN)设计中的基本概念之一,从某种意义上说,对现象的监视质量取决于传感器对所关注领域的覆盖程度,这取决于传感器提供的服务质量。它使传感器能够检测现场可能发生的任何事件,从而满足特定于应用程序的要求。几种应用程序需要k覆盖,该字段中的每个点至少要有k个传感器覆盖,这有助于提高数据可用性以确保更好的数据可靠性。在稀疏部署的WSN中,实现感兴趣区域的k覆盖率变得更具挑战性。尽管在文献中已经对WSN的覆盖范围问题进行了很好的研究,但是对于稀疏部署的WSN的案例,只有很少的研究努力。因此,在本文中,我们研究了使用静态和移动传感器的稀疏WSN中的k覆盖问题,这些传感器不一定具有相同的通信范围,感测范围和能量供应。精确地,我们为稀疏部署的WSN中的k覆盖率提出了一个优化的通用框架,称为k-SCHEMES,它利用了传感器的异质性和移动性。首先,我们使用基于Helly定理的异构传感器表征k覆盖率。其次,我们介绍了高能效的四层体系结构,以实现现场感兴趣区域的移动k覆盖。第三,在此体系结构的顶部,我们建议使用移动代理接收器的概念,这两种数据收集协议分别称为直接数据收集和基于转发链的数据收集。我们发现第二个数据收集协议优于第一个。对于节能转发,我们计算形成转发链的任何一对连续的移动代理接收器之间的最小传输距离,以及该链中相应的最佳移动代理接收器数量。我们用几个模拟结果来证实我们的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号