首页> 外文期刊>ACM transactions on mathematical software >Solution of Dense Linear Systems via Roundoff-Error-Free Factorization Algorithms: Theoretical Connections and Computational Comparisons
【24h】

Solution of Dense Linear Systems via Roundoff-Error-Free Factorization Algorithms: Theoretical Connections and Computational Comparisons

机译:通过无舍入误差分解算法的稠密线性系统的理论联系和计算比较

获取原文
获取原文并翻译 | 示例
           

摘要

Exact solving of systems of linear equations (SLEs) is a fundamental subroutine within number theory, formal verification of mathematical proofs, and exact-precision mathematical programming. Moreover, efficient exact SLE solution methods could be valuable for a growing body of science and engineering applications where current fixed-precision standards have been deemed inadequate. This article contains key derivations relating, and computational tests comparing, two exact direct solution frameworks: roundoff-error-free (REF) LU factorization and rational arithmetic LU factorization. Specifically, both approaches solve the linear system Ax = b by factoring the matrix A into the product of a lower triangular (L) and upper triangular (U) matrix, A = LU. Most significantly, the featured findings reveal that the integer-preserving REF factorization framework solves dense SLEs one order of magnitude faster than the exact rational arithmetic approach while requiring half the memory. Since rational LU is utilized for basic solution validation in exact linear and mixed-integer programming, these results offer preliminary evidence of the potential of the REF factorization framework to be utilized within this specific context. Additionally, this article develops and analyzes an efficient streamlined version of Edmonds's Q-matrix approach that can be implemented as another basic solution validation approach. Further experiments demonstrate that the REF factorization framework also outperforms this alternative integer-preserving approach in terms of memory requirements and computational effort. General purpose codes to solve dense SLEs exactly via any of the aforementioned methods have been made available to the research and academic communities.
机译:线性方程组(SLE)的精确求解是数论,数学证明的形式验证和精确数学编程的基本子例程。此外,高效的精确SLE解决方案方法对于越来越多的科学和工程应用(对于当前的固定精度标准已被认为不足够)可能具有宝贵的价值。本文包含与两个精确的直接解决方案框架相关的关键派生以及比较的计算测试:舍入无误差(REF)LU分解和有理算术LU分解。具体地说,两种方法都通过将矩阵A分解为下三角(L)和上三角(U)矩阵的乘积A = LU来求解线性系统Ax = b。最重要的是,这些重要发现表明,保留整数的REF因式分解框架解决密集型SLE的速度比精确的有理算术方法快一个数量级,而所需的内存却减少了一半。由于合理的LU用于精确的线性和混合整数编程中的基本解决方案验证,因此这些结果提供了REF因数分解框架在此特定上下文中使用的潜力的初步证据。此外,本文开发并分析了Edmonds的Q-matrix方法的高效简化版本,可以将其实现为另一种基本的解决方案验证方法。进一步的实验表明,就内存需求和计算工作量而言,REF因数分解框架也优于这种替代的整数保存方法。研究人员和学术界已经可以使用通用代码来精确地通过上述任何一种方法解决密集的SLE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号