首页> 外文期刊>ACM Transactions on Graphics >Anderson Acceleration for Geometry Optimization and Physics Simulation
【24h】

Anderson Acceleration for Geometry Optimization and Physics Simulation

机译:用于几何优化和物理模拟的安德森加速

获取原文
获取原文并翻译 | 示例
       

摘要

Many computer graphics problems require computing geometric shapes subject to certain constraints. This often results in non-linear and non-convex optimization problems with globally coupled variables, which pose great challenge for interactive applications. Local-global solvers developed in recent years can quickly compute an approximate solution to such problems, making them an attractive choice for applications that prioritize efficiency over accuracy. However, these solvers suffer from lower convergence rate, and may take a long time to compute an accurate result. In this paper, we propose a simple and effective technique to accelerate the convergence of such solvers. By treating each local-global step as a fixed-point iteration, we apply Anderson acceleration, a well-established technique for fixed-point solvers, to speed up the convergence of a local-global solver. To address the stability issue of classical Anderson acceleration, we propose a simple strategy to guarantee the decrease of target energy and ensure its global convergence. In addition, we analyze the connection between Anderson acceleration and quasi-Newton methods, and show that the canonical choice of its mixing parameter is suitable for accelerating local-global solvers. Moreover, our technique is effective beyond classical local-global solvers, and can be applied to iterative methods with a common structure. We evaluate the performance of our technique on a variety of geometry optimization and physics simulation problems. Our approach significantly reduces the number of iterations required to compute an accurate result, with only a slight increase of computational cost per iteration. Its simplicity and effectiveness makes it a promising tool for accelerating existing algorithms as well as designing efficient new algorithms.
机译:许多计算机图形学问题需要计算受某些约束的几何形状。这通常会导致具有全局耦合变量的非线性和非凸优化问题,这对交互式应用程序构成了巨大挑战。近年来开发的局部全局求解器可以快速计算出此类问题的近似解决方案,使其成为优先考虑效率而不是准确性的应用的有吸引力的选择。但是,这些求解器的收敛速度较低,可能需要很长时间才能计算出准确的结果。在本文中,我们提出了一种简单有效的技术来加速此类求解器的收敛。通过将每个局部全局步骤视为定点迭代,我们应用了安德森加速(一种成熟的定点求解器技术)来加速局部全局求解器的收敛。为了解决经典安德森加速度的稳定性问题,我们提出了一种简单的策略来保证目标能量的减少并确保其全局收敛。此外,我们分析了安德森加速度法和拟牛顿法之间的联系,并表明其混合参数的规范选择适用于加速局部全局求解器。而且,我们的技术在经典的局部全局求解器之外还有效,并且可以应用于具有通用结构的迭代方法。我们评估我们的技术在各种几何优化和物理模拟问题上的性能。我们的方法大大减少了计算准确结果所需的迭代次数,而每次迭代的计算成本仅略微增加。它的简单性和有效性使其成为加速现有算法以及设计高效新算法的有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号